
NASA CR-134473

NASA-CR-134473) NASIS DATA BASE N73-31135
HIANAGEMENT SYSTEM - IBM 360/370 OS aVT
IMPLEMENTATION. 4: PROGRAM DESIGN
(Neoterics, Inc., Cleveland, Ohio.) Unclas

-5-p HC $31.50 CSCL 09B G3/08 13773

NAS IS DATA BASE MANAGEMENT SYSTEM - IBM 360/370 OS MVT IMPLEMENTATION

IV - PROGRAM DESIGN SPECIFICATIONS

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center 77

Contract NAS. 3f'14979 0

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA CR-134473
4. Title and Subtitle NASIS DATA BASE MANAGEMENT SYSTEM - IBM 5. Report Date

360/370 OS MVT IMPLEMENTATION September 1973

IV - PROGRAM DESIGN SPECIFICATIONS 6. Performing Organization Code

7. Author(s) 8. Performing Organization Report No.

None

10. Work Unit No.
9. Performing Organization Name and Address

Neoterics, Inc. 11. Contract or Grant No.

2800 Euclid Avenue NAS 3-14979

Cleveland, Ohio 44115 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, D.C. 20546

15. Supplementary Notes

Final Report. Project Manager, Charles M. Goldstein, Computer Services Division, NASA Lewis

Research Center, Cleveland, Ohio

16. Abstract

The NASIS development workbook contains all the required system documentation. The workbook

includes the following seven volumes:

I - Installation Standards (CR-134470)

II - Overviews (CR-134471)

III - Data Set Specifications (CR-134472)

IV - Program Design Specifications (CR-134473)

V - Retrieval Command System Reference Manual (CR-134474)

VI - NASIS Message File (CR-134475)

VII - Data Base Administrator User's Guide (CR-134476)

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Unclassified - unlimited

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified Unclassified 582 $10.75

* For sale by the National Technical Information Service, Springfield, Virginia 22151

PAGE 2

TABLE OF CONTENTS

TOPIC A - MULTI-TEMINAL TASKING

A.1 NMTTSUP - MTT Monitor 5
A.2 NDBMTT - Initial Entry Routine, Retrieval. . . 29
A.3 NMTTSTRT - TT Initialization. 34
A.4 NIGC253 - Supervisor Call Routine. 38
A.5 NDBMTTE - Decriptor Editor Entry Routine . . . 40

A.6 NDBMTTP - Batch-Print Entry Routine. 45

TOPIC B - DATA BASE EXECUTIVE

B.1 Data Base Preprocessor 50
B.2 NDEPAC - Data Base Executive (DBRPAC,DBMPAC) . 65
E.3 NDBDBIC - Data Base I/O. 84
B.4 NDBEXI S - Conversion and Formatting Routines. 95
B.5 NDBLIST - List Processor 98

B.6 NCCLIST - Parent-Children list Processor . . .125

B.7 NDBRTNS - Assembler Routines128

B.8 NDBOSET - Set Manager, 131
B.9 NDBSETIO - Set File I/. 172
B.10 NDBFLDU - Field Utilities. 176

B.11 NDBCALI - Call-by-name Routine181

TOPIC C - UTILITIES

C.1 NDBJOIN - JOIN NASIS Users . . . *186
C.2 NDBTABIE - ESDTAE File Generator191

C.3 NDBMTAE - MODTAB File Generator.196
C.4 NDBSETI - Sets Information File Generator. .. 201
C,5 NSETINIT - Set File Generator205

TOPIC D - MAINTENANCE

D.1 NFPARM - Free Form Parameter Program209
D.2 NPRTFILE - Print File Program.213
D, .3 VDBMNTN - Maintenance Mainline217
D.4 NDBLOAD - Load/Create Program.227
D.5 NDBIVRT1 - File Invert, Program 1. •232
D.6 NDBIVRT2 - File Invert, Program 2. 237
D.7 NDBINDM - Index Merge, . o a a a * a a o . .24.2
D.8 NDBRECL - Maximum Record Length.249

D, 9 NDBEDAC - ADD-CHANGE Commands..254
D. 10 NDBEDAR - ADDIIKE-ENAME Commands.262
D. 11 NDEEDCP - CBKPOINT Command267
D.12 NDBEDCS - CREATSUB Command 272
D. 13 NDBEDDE - END Command.277
D.14 NDBEDDI - DISPLAY Internal Command282

D. 15 NDBEDDL - DELETE Field Command289
D. 16 NDBEDDP - DISPLAY Field Command. 294
D,17 DBEDIN - Initialization Routine, . .300

PAGE 3

D.18 NDBEDFD - FIELDS Ccmmand 314
D.19 NDBEDFI - FILE Command 318
D.20 NDBEDSU - SUPERFLD Command324
D.21 NDBEDLD - Load Descriptors Routine . . . *.. 329
D.22 NDBEDMC - MOVE Command* * . 336
D.23 NDBEDPA - PATCH Command*341
D.24 NDBEDPF - PRINT Command. . . .*.346
D.25 NDBEDRS - Record Security Routine.351
D. 26 NDBEDRT - RESTORE Command.356
D.27 NDBEDRV - REVIEW Command 361
D.28 NDBEDSS - SVASTRT Command.367

TOPIC B - TERMINAL SUPPORT

E,1 Terminal Support Preprocessor.373
E.2 NTSUPEP - Terminal Support Supervisor.382
E,.3 NDBPLINK - PLI/Assembler Linkage Routine . , 398
E.4 NTSATTN - Attention Interface.401
E.5 NDBATTN - Attention Prompting Routine.404

TOPIC F - DATA RETRIEVAL

7.1 NDBINIT - Retrieval Initialization406
F.2 NDBFLDS - FIELDS Command411
F.3 NDBXPNr - EXPAND Ccmmand416
7.4 NDBSLCI - SEARCH/SELECT Commands421
F.5 NDBDSPL - DISPLAY Command, Module 1.433
F.6 NDBPRNT - PRINT Command,439
F.7 NDEEXSP - EXECUTE Command.447
1.8 NDBSETS - SETS Command453
F.9 NDBSETU - Set Utilities458
F.10 NDBFORM - FORMAT Ccmmand, Module 1463
F.11 NDBSFMT - Store Formats Routine.473
F.12 NDBXPNDE - Expanded Term Routine477
P.13 NDBPRINT - Batch Print Monitor479
F.14 NDBVRIT - Batch Print Output Module 484
F,15 NDBCORR - CORRECT Command.489
.16 DBCORRW - Transaction Write Routine.498

j.17 DBDSPLA - DISPLAY Command, Module 2.503
7.18 DBFORMA - FORMAT Ccmmand, Module 2510

TOPIC G - USAGE STATISTICS

G.1 NDBACCUM - Statistics Accumulator.516
G. 2 NDBPRNTR - Print Retrieval Statistics Routine.521
G.3 NDBUPDST - Update Faint. Statistics Routine. .525
G.4 NTIMERS - Clock Routines532
G.5 NDBPRNTM - Print Maint. Statistics Routine . .534
G.6 NDBSTAT - Retrieval Statistics Director. . .539

TOPIC H - IMMEDIATE COMMANDS

H.1 NDBEXPL - EXPLAIN Facility545

PAGE 4

H.2 NDBSTRT - Strategy Interface552
H.3 NTSTRAT - Strategy Assembler Routine559
H.4 NDBUSER - User Verb Table*564
H.5 NDBFRO - User Profile Routine.566
H.6 NTSPRO - User Profile Assembler Routines . . .573
H.7 NDBCMNr - PL/I Immediate Ccmmand Interface . .580

PAGE 5

TOFIC A.1 - MONITCR

A. MODULE NAME

Multi-Terminal Tasking Monitor
Program-ID - NMTTSUP
Module-ID - MTTSUP

B. ANALYST

J. H. Berpel
Neoterics, Inc.

C. MODULE FUNCTION

The Monitor is the program which is responsible for the
multi-programming and
terminal-handling functicns for CS NASIS. It also
contains support for such
things as some user commands which fall most easily to
the Monitor to
process, the loading/scheduling of programs in
"transient" memory, the
accumulation of user timing statistics, and so on.
Finally, it is the single
program which is responsible for the terminal-related
communication with
the operating system (OS/360).

D. tATA REQUIREMENTS

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

Not Applicable

2. Narrative

a. Overview

With the exception of some routines which initiate
NASIS and take it back
down, the Monitor consists of one queue-scanning
and scheduling routine to
scan the various queues which tell the Monitor
what work there is to be
done and a bunch of subroutines to actually
perform the indicated work.
Thus, there are two main flows of control through

PAGE 6

the program. The first
is from the queue-scanning/scheduling routine to a
subroutine to perform
a particular function (program load, terminal I/O,
etc.), back to the
scheduler and by and by to a (NASIS) task for
execution. Since the Monitcr
can be called by NASIS programs for requests, the
other possible flow has
a call to the Monitcr at one of the service entry
points and a return to
the calling program around the first flow.
Finally, under certain circum-
stances, the scheduling routine is not always
needed to fulfill an
application request so it may be left out of the
flow of control on
occasion.

b. External Specifications

1. Module Name - MTTSUP
2. CSECT name - MTTSUFC
3. Entry Point Names

a. OSNASIS (To initialize all of NASIS.)
Main entry.

b. MTTREAD (To read text from a user
terminal.)

c. MTTWRITE (To write text to a user
terminal.)

d. MTTPGMIN (To process program
interruptions.)

e. MTTWBEAD (To vrite text to and read text
from a user terminal.)

f. MTTFLUSH (To empty the I/ buffer to a
user terminal.)

q. MTTTSEND (To end the time-slice for a
user.)

h. MTTXTR (Tc provide application
information to a program.)

i. MTTGETIM (To provide timing information
to a proqram.)

j. MTTMUST (To enter "must complete"
status.)

k. MTTKA (To enter "KA" mode.)
1. MTTKB (To enter "FB" mode.)
m. MTTUSERS (To execute the "users"

command.)
n. IMTTNUSER (To execute the "nusers"

command.)
o. NTTHELP (To execute the "help" command.)
p. MTTMSG (To execute the "msq" command.)

PAGE 7

q. MTTPASS (To provide a program with a
user's security code.)

r. MTTNLOD (Tc provide skipping of
transient loading.)

s. MTTMLOD (To provide requirement of
transient loading.)

t. MTTCALL (To support the loading of
a transient program.)

u. MTITSE (To leave "must complete" mode.)
v. MTTCMND (To sort and process a user

command.)

4. External References

a. TSATIN (Application attention
processing.)

b. IHEMAIN (For initializing a task.)
c. IHENTRY (For initializing a task.)
d. MASTAB (Pointer to the master set file

table.)
e. INTPNDS ("FINDDS" table initialization

routine.)
f. TSATIN (Application attention

processing.)

c. Sectional Narratives

The following sections describe the workings of
the Monitor section by
section as the sections appear in the Monitor
itself. Please note that
these discussions are ordered only by their
appearance in the Monitor and
not in any manner of program flow.

1. MTTINIT (System Initialization)

This routine is the one called by the
operating system to initiate NASIS.
it first sets-up the proper linkage and then
loads and executes the
MTTSTART routine to perform all the once-only
initializing functions. After
the MTTSTART routine has finished execution
and returned tc the Monitor,
it is unloaded (deleted). New a SPIE is
issued to obtain control upon
the occurance of a non-maskable program
interruption. (The maskable
interrupts are masked out.) After this is
done, some alterations are made
in a couple of BTAM modules. Specifically,
IGG019PF is altered to permit

PAGE 8

attention interrupts and IGGC19MP is altered
to prevent timeouts. At this
point all the initialization is complete and
the scheduler (MITFINDC) is
called to begin user processing.

2. INITEND (System termination)

This routine un-does everything that MTTINIT
did. It is called by the
scheduler after it has determined that it is
time to shut dcwn. All
this routine does is load, execute and delete
the MTTEND routine and
then issue a SPIE macro with no operands to
relinquish control of
program interruptions. After this is done,
the routine returns control
to the operating system by returning through
the linkaqe.

3. MTTFINDQ (Queue-scanning and scheduling)

This is the routine which locks for work for
the Monitor to do and calls
the appropriate subroutines to perform the
indicated tasks. On entry,
this routine saves registers for returning
callers and sets an indicator
as to whether cr not there are saved
registers. It then 7etoes out the
current-user indicators preparatory to
switching tasks.

The first scan made is the one for messages
to be sent to tasks. If any
are found in the Terminal Table (TRQ) and the
task is eligible to recieve
the message, it is sent by calling the
MTTSENDM routine.

After this scan is done, the current time is
obtained by the TIME macro and
compared with the time specified at shutdown
time. If the time returned by
TIME is greater than the shutdown time, the
INITEND routine is called to
terminate NASIS.

The next scan is again throuah the TRQ for
users to be forced off NASIS.
If any are found, a quickie subroutine named
FDQFORCE is called to send the

PAGE 9

force message to the user (MTTsEIT1) and then
log off the user
(MTTQUIT1).

The next scan through the TRQ looks for user
core requests. They are
processed by a call to the MTTCCRE routine.

Now the scan tbrough the terminal table for
completed user terminal I/C
operations is started. This scan is made by
interrogating the DECB in
each TRQ entry for posted status. Each time
one is found tc have been
posted, it is examined by tranching to the
appropriate code to process
each permissible terminal type. Each time a
DECB is found not to be
posted, it is returned to the ECB list to be
waited on if there is
I/O in progress for the terminal. If I/O is
not in progress, the
TRQ is skipped over. The I/O completion
examination code starts with
a check for a valid terminal type. After
this is verified, the code for
the type of terminal is called to check for
exceptional (error) conditions
(i. e. line errors). In the case of a hard
line error, the line is hung
up and re-opened; in the case of an
attention, indication of same is
merely added to the return code returned to
the caller of the scanning
routine. If there were no errors,
examination continues by checking the
type of operation which just completed. If
it was a read initial operation,
the MTTTASKI routine is called to log on the
new user. If it was a
write operation, processing is finished and
the FDQRETN routine is
branched to to enter the task into the
work-to-be-done queue. If the
completed operation was a read, the returns
are checked to see if the
user entered too much text (buffer overflow).
If that is the case, a
return code is set-up to indicate the
condition to the caller of the
scanning routine. After the I/O completion
stati are processed, the
task is placed into the work queue (this is

PAGE 10

FDQRETN). This is dcne by
locating the TFQ entry pointer and setting
the work flag in it so that the
next scan will find it. This scan is
finished when the entire list of
DECB's has been examined.

The last scan is the one which looks for
tasks with processing to be
started. These can be tasks restarting after
a time-slice end or tasks
which have gone through the I/O completion
code described above. The
TRQ is scanned for users with work to do
starting with the task after
the last one to have been dispatched. After
a task has been found with
work to be done, the loading indicators are
examined to determine whether
or not a transient load is required to get
the appropriate program back
in memory. If a load is needed, the HTTLOAD
subroutine is called to
process it. If on return from that routine,
the module is loaded, the
FDQTSTSP routine is branched to to get the
task started. Otherwise (or
if the task didn't have work to do) the rest
of the TRQ is scanned.

If a task was found eligible to start
processing by the last scan, all
the pointers relavent to the "current task"
information are posted
and the dispatcher (HTTDISPR) is branched to
to actually initiate
execution for the task.

If the last scan didn't find anything, it
means that there is nothing at
all for the Honitor to do. At this point, a
timer ECB is added to the
end of the list of terminal ECB's (for
checking shutdown time) and this
ECB list is WAITed on. Upon return from this
WAIT, the timer is cancelled
and the beginning of the queue scanner is
returned to to see which ECB
it was that was posted.

Also in the queue-scanner is the routine to
post the completion of the
ticer set by the waiting routine. All it

PAGE 11

does is post the ECB for the
timer and return to the system so as to
notify the wait routine that
it terminated.

4. MTTLOAD (Transient module load)

This is the routine which checks and (maybe)
loads a transient nodule. Upon
entry it investigates the segment table to
see if a SEGLD has been posted
complete. If cne has, the internal flag is
turned off. Now the module
to be loaded is looked for in the Module
Entry Table (MET). After it is
found, the MET entry is examined to see if
the requested module is already
loaded. If it is, the caller is returned to
with the loaded flag set in
the TRQ entry. If the module is not loaded,
a check is made to see if it
has been assigned to a partition. If it has,
a check is made to see if the
module has been loaded (segment table). If
it has, the caller is returned
to; if the load is in progress for the
module, return is made to tell the
scheduler to wait a while. Otherwise, the
code to check for a timed-out
partition is branched to.

If the requested module is not assigned to a
partition, an empty partition
is looked for. If one is found, the module
is assigned to it and the
code to initiate the loading of the module is
branched to. If no empty
partition is found, one which is not being
used is looked for (i. e. the
number of users is zero). If one is found,
its module entry is marked
unloaded and the code to load the requested
module is branched to. The
next effort to locate a partition is to find
one which has timed out.
If one is found which has exceeded its time
in execution, it is overlaved
in the same manner as an unused partition.
The last test is to see if
the requested module is a "priority" module.
If it is, the first
partition is overlayed with the requested
module in the same manner as

PAGE 12

if the partiticn was unused. If all the test
failed, the module is marked
not loaded and the scheduler is returned to.

The code to initiate a load into a partition
begins by posting the MET
pointer in the partition table (PET). Then
the partition number is set
in the MET and the partition time is set to
zero. Now a check is made
to see if a SEGLD is already in progress
since only one is alloved to be
in progress at a time. If there is one
already executing, the scheduler
is told that it will have to wait for a
while. Otherwise, all the
parameters to initiate a SEGLD are set-up
manually and the SEGID for
the module is initiated via a SVC 37. Now
the internal flag indicating
a SEGLD in progress is turned on and the
scheduler is returned to with
the load flag in the TBQ entry turned off to
tell it to wait until the
module is loaded.

5. MTTTIMER (Sub-task time-slice timer
initiation)

All this routine does is start the task's
time-slice timer running with
the STIMER macro. The interval used is
the"next time slice" field
in the TCTE. After the STIMER is issued, an
internal flag is set indicating
that there is a timer active and the caller
is returned to.

6. MTTUNTIM (Sub-task time-slice timer
cancellation)

This routine is called whenever somebody
wants to stop the task's time-slice
timer (for instance, a service routine called
by the applicaticn). On
entry it makes sure there is a timer running
(if there isn't, the caller
is merely returned to) and cancels it with a
TTIMER macro call. After the
TTIMER completes, the next time slice value
is updated to contain the amount
of time left in the time-slice and the timing
accumulators are updated by

PAGE 13

the amount of time actually used from the
time slice. Return is to the
caller.

6. MTTTSEND (Time-slice end)

This is the routine specified at the exit
routine by the STIMER issued by
the MTTTIMER routine. Upon being called by
the operating system, it
"dequeues" the timer interrupt by saving the
registers and return address
in the PRB and returning to the operating
system. After this manouver,
the task is placed into the work queue (TRQ)
and all the timing accumulators
are updated. The user is set-up to get an
entire time-slice next time
and the queue-scanning routine is exitted to
(at MTTFNDQ1).

7. MTTTSE (Forced time-slice end)

This is a routine which the application may
call to prematurely end a user's
time slice. After performing linkage
initialization, it calls the VTTUNTIM
routine to turn off the time-slice timer.
Now it moves all the caller's
registers and a return PSW into the task's
TCTE. Finally, the task is
marked dispatchable in the TRQ and the
queue-scanner is called to look for
something to do. (When it re-dispatches the
calling task, it will dispatch
it to the return address presented to
MTTTSE,)

8. MTTTASKI (Sub-task initialization)

MTTTASKI is the routine called by the
scheduler when it finds the completion
of a read initial overation at a terminal.
After checking to see if the
system is in the midst of a shutdown (if it
is, the request to log on a
user is ignored), the routine obtains space
for the user's task control
table (TCTE) and posts its pointer in the
terminal table. The user counter
is incremented as soon as this action is
completed for consistency with
the logoff routine. Now the TCTE is

PAGE 14

initialized with as many fields as
the routine kncws about. The user at the
terminal is prompted for his
NASIS-id and (cpticnally) his password by
calls to rTTWRIT1 and MTTFEAD1.
(If he can't provide a valid NASIS-id or
password in three tries, he is
logged off by a call to the MTTQUIT routine.)
After these items are
obtained and posted, the remainder of the
information necessary for the
TCTE is filled in, the operator is notified
that another user has joined
the application and the user is notified of
impending shutdowns and
given the news of the day by calls to
TITEWIT1. Finally, he is marked
present to the application and all his
reoisters are initialized in
the TCTE along with some of the vital
indicators. Return is made to
the queue-scanner at MTTFNDQ1.

9. MTTQUIT (Sub-task termination)

This is the routine used to terminate a
sub-task. It is called either by one
of the routines to force a user off the
system or by a normal return from
the application task. As this routine may or
may not have to return to its
caller, it sets-up indicators for this when
it is called. It then checks
to see if the task to be quit has a task
control table. If it does not, the
implication is that somebody hung-up a phone
and the line is merely re-
enabled. Otherwise, the operator is notified
as to who is leaving by the
MSG macro. Then the user is removed from the
user table (his loqqed-on
flaq is zeroed out so somebody else can use
the userid later). Now the
logoff message containing the used connect
and CPU times is built and sent
to the user via a call to MTTWIT1/MTTFLSH1.

At this point, the TCTE space is freed and
the user is taken out of the
terminal table (TRO). The count of active
users is decremented and the
space used to build the logoff message in is
released. Now the line the

PAGE 15

user was using is re-enabled by issuing a
read initial on it. After all
this is finished, either the caller is
returned to or if there is no return
to be made, control is returned to the queue
scanner at MTTFNDQ1.

10. MTTPOST (Sub-task attention processing)

This is the routine which the queue-scanner
calls with it finds a terminal
which received an attention-only status.
(This means that there was an
asynchronous attention which is a special
case.) Upon entry, it locates the
TCTE for the task and checks myriad and
sundry conditicns to see if the
attention should be ignored (shutdown,
non-logged-on user, etc.). if the
interrupt is acceptable, space for an
attention table is obtained and all
the interrupt information is moved into it.
it is then chained onto the end
of the chain of such tables and the
application attention processing routine
is called with this table is input. If this
processor returns to us, the
last table on the chain is un-linked and
freed. Now the task is reset by
posting the attention interrupt information
back into the TCTE and posting
the work-to-be-done flag in the TRQ. Exit is
to the queue-scanner at
BTTFNDQ1.

The other entry to this routine is at
MTTPOST1 for those routines which are
returned with the attention-in-addition
return code set. This entry merely
"fakes" the interrupt information in the TCTE
and then processes the
attention as above.

11. MTTSENDN (Message sending subroutine)

This subroutine is called by whomever decides
it is time tc send a message to
one of the sub-tasks. All it does is locate
and describe the message, call
TTWRIT1/MTTFLSH1 to send it, take the MCB
(message contrcl block) out of
the MCB chain and free the space for the MCB
and the message by the

PAGE 16

FREEMAIN facility. Beturn is to the caller.

12. MTTCHEKM (Message checking subroutine)

This subroutine is the one called by several
of the service routines to see
if there any messaqes pending for the
sub-task involved. If there are, the
MTTSENDM routine is called tc send the top
message on the chain and get rid
of the MCB and message space. Return is to
the caller.

13. MTTGETIM (Timing obtaining routine)

This service routine is called by the
application whenever it wishes to find
out how much time the sub-task user has spent
connected to the application
and actually computing. After it initializes
the linkage, it calculates the
user's connect time by subtracting the
current system time from the time
when the user logged on. The user's elapsed
CPU time is taken directly
from the TCTE (TCTCPUTM). Ecth these results
are placed in the parameter
list provided ty the caller and he is
returned to.

14. MTTXTR (Information extracting routine)

This is the service routine to present to an
application prcqramn some
information about the user using the
sub-task. Into a parameter list
provided by the caller, this routine places
the following information:
the NASIS-ID of the user, the password of the
user, the task-id of the
sub-task, a flag to say whether multi-tasking
is active (this flag is
alwavs set on), a flag to say whether or not
the sub-task is conversational
(this flag is always set on). This routine,
after filling in the parameter
list for the caller, returns to him.

15. MTTNLOD (No-load request routine)

This routine is called by those application
programs which wish to indicate
to the Monitor that no transient load is

PAGE 17

required to re-dispatch the user.
All this routine does is set the "no-load"
flag on in the task's TRO entry
after it performs standard initialization.
Return is to the caller through
standard linkage.

16. MTTMLOD (Feset no-load request routine)

This service routine is the inverse of
MTTNLOD, After performing
initialization, it turns off the "no-load"
flag in the user's TRQ entry,
turns on the "load" flag (so that no messages
are sent) and then calls
the scheduling routine (HTTFINDC) to cause
the module whose name is in
the user's TRO entry to be loaded. After the
scheduler returns, the
implication is that the module in question
has been loaded, and return is
made to the caller through the linkage.

17. MTTCALL (Module call routine)

This is the routine used by the application
"call" routine (DBCAL) to get
a module loaded. Except for the resetting of
the "no-load" flag (which
DECALL has set for us), the action of this
routine is identical to the
action of the MTTHZOD routine.

18. HTTMUST (Must-complete routine)

This routine ccmprises the "must-complete"
function for the application.
After this routine has been called by an
application program, the sub-task
involved will execute until either MTTTSE is
called or until the next
terminal transaction takes place. All this
routine does is initialize the
linkage, turn cff the user's time-slicing
timer and return to the caller.

19. MTTPASS (Password obtaining routine)

This routine is called by the application
program which needs to know the
user's (new) password (security code). After
it initializes itself and the
linkage, it uses MTTWEIT1 and MTTREAD1 to

PAGE 18

obtain a new security code from
the user. ("Blankinqg" is used here as it is
for the password at logon time.)
No checking of the entered security code is
performed: after it has been
read, the caller is returned to through the
linkage.

20. MTTPGMIN (Program interrupt handler)

This is the routine which is called as a
result of the SPIE issued in MTTINIT
to process the occurance of a program
interruption. After it sets-up all the
necessary registers to run with and saves the
interrupt registers and PSW, it
returns momentarily to the operating system
to cause the interrupt to be
"dequeued". After the return from this
excercise, a message is built to send
to the operator listing out all the interrupt
registers and PSN (for de-
bugging purposes). Then a message is sent to
the user indicating that the
system has done him a wrong and he is forced
off the application by a call
to the MTTQUIT routine. (If there was no
user in control when the interrupt
occured, this last step is skipped.)

21. MTTWRITE (Sub-task write)

This is the application service routine to
write text to the user's terminal.
After this routine has initialized the
linkage (for external callers), it
locates and moves the parameters (text
pointer/text length) into registers.
(At this point is the entry for internal
callers who already have their
parameters in the appropriate registers.)
Now some internal register/flag
initialization is performed and the text
length is checked. If the length
is zero, a single carriage-return is written
to the user. Now all trailing
blanks are removed from the text by
shortening the text length.

Now the buffer is checked for any room at all
and if it is full, it is
emptied by writing it out to the terminal
with the MTTFLSH1 routine.

PAGE 19

At this point, the initialization for
teletypes and for writing after reading
is performed. For writing after reading, a
number of idles corresponding to
the distance across the paper the carriage
was when the user bit carriage-
return is written out. For a teletype, if
the last line was not carriage
hanged, a line-feed and an idle are written
out.

Now the text is processed character by
character. One character is picked-up,
tested and put into the I/O buffer in the
task's TCTE. For certain characters
there is additional processing performed.
These are:
Line-feeds, after which idles must be added;
Backspaces, which must be
accounted for in the distance across the
paper the carriage is; carriage
returns, after which must be added idles;
tabs, after which must also be
added idles. To speed up the testing
process, there is an additional
branch high after the test for line-feeds
(which is the first test) which
will kick out most of the text. For
teletypes, a line-feed may be added
after the carriage-returns found in the text.

After the text has all been moved, end
processing begins. If the text ended
with a carriage hang character (":"), this
processing is skipped. Otherwise,
a carriage-return and idles are inserted
after the text. Also, in the case
of a buffer which has just filled up with the
last character, the buffer is
emptied to the terminal with a call to
MTTFLSH1.

After this has been done, all that remains is
to remember whether the
routine was called internally or externally
and return appropriately.

22. MTTCHARS (Character stuffing subroutine)

This subroutine is used by MTTWfITE whenever
it wants to add s discreet
number of characters to the I/O buffer. As
it moves these characters, it

PAGE 20

checks the condition of the tuffer and
flushes it tc the terminal with
MTTFISH1 if necessary. Return is to the
caller (in MTTWBITE) through a
linkage register.

23. MTTREAD (Sub-task read)

This is the service routine to read text from
a user's terminal. After
initializing the parameter list pointers (one
for the target area and one
for the input length area) for external
callers, the code for both
external and internal callers joins as with
MTTWIT E,

If there is any text in the user's I/O
buffer, it is written with a call
to MTTPLSH1 specifying that the queue routine
to be used is the one which
reads the terminal after writing the text to
it. If there is no user output
text in the buffer, the MTTRDQ routine is
called to just read the terminal.

After the text has teen read, one way or the
other, the length is checked to
make sure the user didn't overflow the
buffer. The text is now translated
from line code to EBCDIC and, optionally, all
lower-case alphabetics are
translated to upper-case. If there is a
carriage-return at the end of the
text it is remcved at this point.

The next thing checked for is a cancelled
line. If the last character in
the user's text is the line-kill character,
the routine re-calls itself to
begin reading the terminal over again.

Now backspaces and trailing blanks are
processed and stripped off,
respectively. Also, a check is made to see
if the last character in the
text is the continuation character, in which
case the flag in the return code
for that event is turned on. (The
application programs are left to process
continuation hcwever they wish to.)

If it was the operator's terminal which was

PAGE 21

read, his input is scanned to see
if it is one of the Monitor commands. If it
was, the appropriate processor
is located and called and the routine to
re-call the MTTREAD routine is
called,

Finally, the length actually read in is
checked against the target length
sent by the caller and the text is moved to
the caller's tarqet area. A
flag indicating text truncation is turned on
if the user entered more text
than the caller allowed for.

Now determination is made to see whether the
routine was called internally
or externally and appropriate return if
effected.

24. MTTWREAD (Sub-task write/read)

This routine is the application service
routine which is used to write text
(a prompting strinq) tc a user's terminal and
then read in the response to
the text. It is not internally callable.

After initialization of the linkage is done,
this routine merely calls the
MTTWRIT1 and MTTREAD1 routines with the
parameters supplied by the
caller to perform the necessary functions.
Return is to the caller through
the standard linkage.

25. MTTFLUSH (Sub-task flush)

This is the service routine which the
application or the Monitor itself can
call to cause the task I/O buffer to be
emptied to the user's terminal.
There is initializaticn code for external
callers to get the linkages set-
up properly, for internal callers, the
registers are merely saved.
After this is done, the routine checks to see
if there is any text in the
buffer. If there is none, the caller is
merely returned to. If there is,
and the terminal is a 1050, an end-of-block
(EOB) is added to the end of
the text. Now the text is ready to be

PAGE 22

written out.

For internal callers, the address of the
desired queue-writing routine is
already specified. For external callers,
MTTWRQ is assumed. The queue-
writing routine is now called to write out
the text and the return code
is checked. If the return code is zero
(successfull initiation), the
queue-scanning routine (MTTFINDC) is called
to await the completion of
the I/O operation. After the queue-scanner
returns, the caller of
flush is returned to (depending on how the
routine was called).

26. MTTRDQ, MTTWRQ, MTTWQAR (Queue I/O
routines)

These are the routines which actually perform
writing and reading I/O on the
sub-task terminal. They are called only from
within the Monitor itself.

MTTFDQ is the routine which is used to only
read text from a sub-task
terminal. After saving all the registers and
locating the DECB in the task's
TRO entry, this routine executes a BTAM read
(TV) on the DECB, It then
turns off the flag allowing WRITE type
"continue"s on the terminal and
branches to join the common return processing
code.

MTIEQ is the routine to only write text to a
terminal. After it saves
the registers and sets-up the DECB pointer in
the TRQ entry, it determines
whether a "ccnversational" or "continuation"
write is called for and performs
the appropriate action with a BTAM WRITE
macro. In addition, if it is
the operator's terminal being written to, the
completion of the write is
awaited with the WAIT macro. The
continue-write-permitted flag is turned
on in all cases and ccntrol transfers to the
common return processing
section.

MTTWRQAR is the routine to read text from a

PAGE 23

user terminal after writing text
to it. This is accomplished by first issuing
a ETAM WRITE (as in MTTWRQ) and
then a BTAM type TV READ. After this is
initiated, the continue-write-
permitted flag is turned off and the return
processing section is fallen
through to.

After whatever type of I/O operation has been
initiated, the return code from
the WRITE or READ is tested. If it is
non-zero, an I/O error return is sent
back to the caller. If it is zero, the
terminal is marked busy in the TCTE
and the caller is returned to.

27, MTTMOVE (Text moving subroutine)

This internal subroutine merely moves text
from here to there in an efficient
manner, The inputs are to address, from
address and length. The method
used are successive MVC's of length 256 until
there are fewer than 2!6 bytes
to be moved and then an executed MVC is
issued to move the rest. Return is
to the caller through a linkage register.

28. MTTTRAN (Text translating subroutine)

This internal subroutine is used to translate
text. The inputs are text
address, table address and length. The
method used is similar to the one
for MTTMOVE except that TRs are used instead
of MvCs.

29. MITCMND (User command routine)

This routine is called by the application to
execute a user command. It
takes as input parameters describing the
command processor address, the
data text pointers and lengths and calls the
appropriate command processor
internally. After the command is finished,
return is made to the caller
through the standard linkage.

30. MTTKA (KA command routine)

This processor is the routine to execute the

PAGE 24

KA command. All it does is
turn on the KA flag in the task's TCTE and
return to the caller

31. HTTKB (KB command routine)

This routine processes the user KB command in
the same manner as the MTTKA
routine except that the flag is turned off
instead of on.

32. MTTMSG (MSG command routine)

This routine is the processor for the
user/operator PSG command. It first
locates and verifies the receiving userid
parameter with the MTTGTUSR
subroutine. It then verifies that there is a
message text parameter by
checking its length. If either of these
tests fail, an error message is
send either with MTTWRIT1 (for users) or the
MSG macro (for the operator).

Nov enough space for the message itself plus
the message control tlcck
(MCB) is obtain via the FREEMAIN macro. The
MCE is filled in and chained
to the end of the MCB chain, the time-field
in the message header is
filled in and the flag in the TPO entry for
the user indicating that there
is at least one message in the queue is
turned on. Peturn is to the caller
through the linkage register.

33. HTTBCST (BCST command routine)

This routine is the one which processes the
operator BCSTccmmand, After
parsing the input string to locate the
message text, it obtains and builds
ACEs for each active user in the same manner
HTTMSG builds them for single
users. After all the active users have the
MCB added to their chains, the
caller is returned to through the linkage
register.

34, MTTSTOP (SRUTDCWN command routine)

This routine is the processor for the
operator SHUITDCN command. This command

PAGE 25

is the one used to terminate the application
after an optional time period.

After locating the time parameter (and
defaulting it if it is not present),
the routine converts the time parameter to a
fixed number and stores it in
the field which is interrogated by the
queue-scanning routine. (There is
a special code which is used to terminate the
application immediately which
is also checked for. If it is found,
termination is effected by an immediate
transfer to the INITENE routine.)

Now the time-of-day of the shutdown is
calculated and a message for the users
warning them of the shutdown is composed.
After the current time is obtained,
the shutdown time field is updated to
correctness by adding its contents to
the current time. After turning on the
shutdown-issued indicator, this
routine sends the shutdown message to the
operator and then exits to the
MTTBCST routine to cause the warning to be
sent to all the users.

35. MTTRELP (EELP command routine)

This routine processes the user EELP command
which is merely a MSG command
with the operator assumed to be the receiving
userid. This routine merely
points to a field containing the operators
userid and the text sent by the
user and exits to the MTTMSG routine to
actually send the message.

36. MTTUSERS (USERS command routine)

This routine is the processor for the
user/operator USERS ccmmand which is
used to list out all the active application
users. Upon entry, this routine
obtains a workarea with the GETMAIN macro and
sets-up to start locking for
users in the terminal table (TRQ),

Before the search is started, a header
message is moved to the vorkarea,
filled in with the time and then sent to the
user with MTTWRITI or to the

PAGE 26

operator with the MSG macro. Now the
terminal table is scanned and for
each active user located, his userid, the
symbolic device address of his
terminal and the user's taskid is sent to
either the user or the operator.
After all the users have been listed, the
caller of this routine is
returned tc through the linkage register.

37. KTTFORCE (FORCE command routine)

The FORCE command is used by the operator to
gracefully get rid of an
application user and this is the routine that
processes the command.
All it does if verify that the userid
specified by the operator is a
valid one, locate the TRQ entry for this user
and turn on the force-
issued flag in that table. (The
queue-scanning routine will do the
actual dirty work.) Return is to the caller
through the linkage register.

38. HTTNUSER (NUSERS command routine)

This is the processor for the user/operator
NUSERS command which is used to
present the number of active application
users. All it does is fill in
a skeleton message with the current time and
number of users (from
HTTUSER#) and then send the result with
either MTTWRIT1 or the MSG macro
depending cn whether it is going to a user or
to the operator. Return
is to the caller tbrough the linkage
register.

39. MTTGTUSR (User locating subroutine)

This subroutine is called by various command
processors to locate the TRQ
entry for a given userid. It compares the
userids in all the IRQ entries
to the one provided by the caller and returns
the correct one if it can
be found in the terminal table. If the
appropriate user can not be located,
a non-zero condition code is returned to the
caller to so indicate.

PAGE 27

40. HTTBUSR (User error subroutine)

This subroutine is a convenience item used by
the command routines when they
come across an invalid userid. All this
routine does is send an error message
to either the user (M17WRIT1) or the operator
(MSG macro) and then return
to the original caller of the command
routine.

41. HTTBMSG (Message error subroutine)

This subroutine does the same thing as the
NTTBUSR subroutine except that
the error condition located for this routine
was missing message text.

42. HTTPRHPT (Operator communication)

This is the routine which is called as a
result of the issuance of an MSG
macro. It first sets-up and fills in a
time-stamp and sends it to the
operator via the W1TWFIT1 routine. Now the
message proper is sent to the
operator the same way. (The time-stamp is
sent with a carriage-hang so that
the message comes out all on one line.)
Before returning to the caller,
this routine turns off the time-slicing timer
lust in case.

43. MTTCOPF (Core obtaining subroutine)

This is the subroutine which is called by the
queue-scanner/scheduler when
it finds an outstanding user core request.
All it does is load the number
of bytes requested from the TCTE for the task
and issue a conditional
GETHAIN macro for that number of bytes, If
the GETHAIN is successful, the
core request flag in the TRO entry is turned
off before returning, other-
wise, the caller is merely returned to.

44. MTTDISPR (Sub-task dispatch)

This is the routine which is called when it
is necessary tc re-start execution
of one of the sub-tasks. Upon entry, it
checks for a dispatch for the first

PAGE 28

time and exits to the first-time code if this
is the case. The other test
made here is for an internal dispatch. If
that is the case, the registers
are merely restored from the task control
table (TCTE) and the returning
register is branched through.

Normal dispatch to a sub-task is accomplished
by restarting the task timer
(MTTTIMER routine), loading the floating
registers, loading the general
registers and finally entering supervisor
state long enough to load the
resume PSW which has been moved to location
240 (decimal) for address-
ibility.

First-time dispatching is handled by first
turning off that indicator and
then starting the task's time-slice timer (by
calling MTTTIMER). After
the floating registers are initialized,
linkage is set-up to call the
application the first time by pointing
IHEMAIN at the application entry
point (DBMTT) and calling it.

PAGE 29

TOFIC A.2 - INITIAL ENTRY ROUTINE

A. MODULE NAME

Initial Entry Routine, Retrieval Only
Frogram-ID - NDBMTT
Module-ID - DBMTT

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

The function of this module is to perform the necessary
allocations of the external data items used by the
retrieval system, It also issues the initial prompt,
which is used to determine which NASIS sub-system the
user wishes to invoke, and then calls the proper module
for that sub-system.

D. LATA REQUIREMENTS

1. I/O Elock Diagrams

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

t. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

PAGE 30

c, Formatted Print-outs

Not Applicable

4. Reference Tables

The program makes use of the following tables:

a. USERTAB

b. VERETAB

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Initialize

This routine initializes the interrupt (ATTN
and END) processing routines and the PL/I
error handler. It allocates and initializes
the user data table. The program also
allocates and initializes the verb table
(including user specified commands) which it
uses in the prompt routine.

b. Define

This routine performs all of the file control
block allocations and initializations
necessary for the proper operation of the
rest of the NASIS system.

c. Prompter

This routine sets a temporary END condition
handler which results in a new prompt on an
END condition. It prompts the user for a
command and searches the verb table for a
matching entry. If no match is found a
diagnostic message is written to the user and
the prompt re-issued.

The verb tatle entry is analyzed and if an
immediate command has been entered, the
program branches tc the routine which
processes that command, Otherwise, the
program optionally establishes a new strategy
and then calls the entry point of the

PAGE 31-33

processer for the command entered. When
control is returned to DBMTT, the user is
prompted for the dispcsition of the current
strategy and it is either renewed or
erased.

When the command entered has been completely
processed, control is passed back to the
prompting routine. The entry of an END
command causes the program to be
terminated.

F. CODING SPECIFICATIONS

1. Source Language

This module is written in the IBM PL/I (F)
language.

2. Suggestions and Techniques

Not Applicable

1PAGE 34

PRECEDING PAGE BLANK NOT FILMED

TOPIC A.3 - MT/T MONITOR INITIALIZATICN ECUTINE

A. MODULE NAME

Monitor Initialization Program
Proqram-ID - NMTTSTRT
Module-ID MTTSTRT

B. ANALYST

J. H, Herpel
Neoterics, Inc.

C. MODULE FUNCTION

The Monitor Initializaticn Routine is loaded by the
MT/T Monitor to perform
all the once-cnly initialization function required by
the Monitor. Since
this routine is Icaded, executed and then unloaded, the
space taken up by
it is not left idle after it is finished executing.

D. LATA REQUIREMENTS

1. Parameter list from the EXEC statement in the JCL
stream.

2. DD statement for the master set file information
table in the JCL stream.

3. DD statement for the module table in the JCL
stream.

4. DD statement for the ESD table in the JCL stream.

5. DD statement for the user table in the JCL stream.

6. DD statements for the terminal line groups in the
JCL stream.

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

Not Applicable

2. Narrative

a. Overview

This program performs all the once-only

PAGE 35

initialization required by the
Monitor. These include the obtaining and
setting-up of the user table,
module table, partition table, line groups and so
on. There is direct
communication with the Monitor by way of an entry
point into the Monitor's
CSECT where the communication variables are. This
routine is also
responsible for initializing all the terminal
lines and initiating the
operator's sub-task,

b. Detailed Description

The following section is a discussion of the
program in the order it
appears in the listing.

After HT!STRT has initialized the linkage
conventions, the first thing it
does is inform the (OS) operator where the
Monitor's CSECT begins by printing
its address on the console typewriter with a WTO
macro. It then parses
and isolates the parameters supplied on the EXEC
card in the JCL stream.

One of the parameters is the maximum allowed
number of users. This parameter
is used for allocating space for and initializing
the terminal table (TRQ).
Space for it is obtained via GETMAIN and then the
following fields are
initialized in each entry: TCTE pointer, module
request field, flags,
module table entry pointer, relative terminal
number, skeleton DECB and
a fake symbolic device address.

From the TIOT (Task I/O Table) the descriptions of
the line groups are
located (they get there from the DD statements in
the JCL stream). These
are used to fill in terminal information in the
TRQ terminal type and
DECB fields.

Next, the routine locates the dcb for the Module
Table and opens it. It
then reads the header record from the table and
from it calculates the
room necessary to hold the information in the

PAGE 36

dataset. After this space
is obtained via GET!AIN, the partition table is
initialized (with the
number of partitions contained on the first record
in the module table).
Also from that record, space for the module table
is allocated with
GETMAIN, Now the module table is built one entry
from each of the
remaining records in the mcdule table dataset.

Now the segment table dataset is located and
opened. The records in it
are scanned until the one describing the CSECT for
the Monitor is found
and its offset is saved in the segment table.

Next the DCB for the user table dataset is opened
and the records in the
dataset are all read in and counted. The number
of records is used to
determine how much space is required for the user
table and that much
space is obtain via GETMAIN. Now the dataset is
read again and entries
in the user table are created from the records in
the dataset, one for one.

After this is done, the set file master table is
opened and read. Space
for the set buffers is allocated. Now space for
the segment table itself
is obtained and the table is initialized from
information in the set file
master table.

At this point, the space for the task control
table for the operator's task
is obtained via GETMAIN. After the space is
obtained, the TCTE is filled in
with arbitrary operator information and the first
terminal table is pcsted
as being the operator. (This will be the first
phone line called in on.)
After the TRQ entry is posted with the TCTE
pointer, the duplicated
information is transferred from the TRQ entry to
the TCT.

Now the program points to the DCB list it
constructed for all the terminal
lines and opens each of them with the BTAM OPEN
macro. If any DCB

PAGE .37

fails to open in this manner, the program
terminates with an error.

After all the line group DCBs are opened, the
program locates the
DCB for the first phone line and enables it via a
BTAR READ initial
(TI). It now waits until scmebody rings its bell,
After a connection
is made to this line, its ECE is cleared and some
flags are marked
special to the operator task (which never calls
the application but
remains dormant to receive messages and make
requests.)

As soon as the operator is connected, all the
remaining terminal phone
lines are enable with READ initials and the
Monitor is returned to.

PAGE 38

TOEIC A.4 - MT/T SVC

A. MODULE NAME

Program-ID: NIGC253
Module-ID: IGC253

B. ANALYST

John H. Herpel,
Neoterics, Inc.

C, MODULE FUNCTION

This module is a type 1 SVC issued by the MTTSUP
monitor to get into protect key zero-supervisor
state or back to problem program state. When the SVC
is issued, register one is set tc zero for supervisor
state or one for original program state. Register
zero must contain 'NASI' for this SVC to proceed.

D. DATA REQOUIREMENTS

i. I/O Block Diagram

Not Applicable

2. Input Data Sets

Not Applicable

3. Output Data Sets

Not Applicable

4,. Reference Tables

Not Applicable

E. PEOCESSING REQUIREMENTS

1. Top Level Flovchart

See Figure 1.

2. Narrative

See MODULE FUNCTION (C).

F. CODING SPECIFICATIONS

1. Source Language

PAGE 39

This module is written in IBM OS/360
Assembler language.

2 Suggestions and Techniques

Not Applicable

Reg. 0

CHANGE OLD LOOK UP
PSW PROTECT TASK PSW
KEY To ZERO, VALUE IN
SUPERVISOR TCB

CHANGE OLD
PSW TO LAST
PSW PROGRAM

STATE

Figure 1. Top Level Flowchart

PAGE 40

TORC A.5 - INITIAL ENTRY RCUTINE

A. MODULE NAME

Initial Entry Routine, Descriptor Editor Only
Program-ID - NDBMTTE
Module-ID - EMITTE

B, ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

The function of this module is tc perform the necessary
allocations of the external data items used by the
descriptor editor system. It also issues the initial
prompt, which is used to determine which NASIS
sub-system the user wishes to invoke, and then calls
the proper module for that sub-system.

D. DATA REQUIREMENTS

1. I/O Block Diagrams

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b., Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3. Output Eata Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

PAGE 41

c. Formatted Print-outs

Not Applicable

4. Reference Tables

The program makes use of the following tables:

a. USERTAB

b. VERBTAB

E PROCESSING REQUIRENENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Initialize

This routine initializes the interrupt (ATTN
and END) processing routines and the PL/I
error handler. It allocates and initializes
the user data table. The program also
allocates and initializes the verb table
(includina user specified commands) which it
uses in the prompt routine.

b. Define

This routine performs all of the file control
block allocations and initializations
necessary for the pioper operation of the
rest of the NASIS system.

c. Prompter

This routine sets a temporary END condition
handler which results in a new prompt on an
END condition. It prompts the user for a
command and searches the verb table for a
matching entry. If no match is found a
diagnostic message is written to the user and
the prompt re-issued.

The verb table entry is analyzed and if an
immediate command has been entered, the
prcgram branches to the routine which
processes that command. Otherwise, the
program optionally establishes a new strategy
and then calls the entry point of the

PAGE 42

processer for the command entered. When
control is returned to DETTE, the user is
prompted for the disposition of the current
strategy and it is either renewed or
erased.

When the command entered has been completely
processed, control is passed back to the
prompting routine. The entry of an END
command causes the program to be
terminated.

F. CODING SPECIFICATIONS

1. Source Language

This module is written in the IBE PL/I (F)
language.

2. Suggestions and Techniques

Not Applicable

CRT
TERMINAL WRITER

TERMINAL

-~- - ------------

DBMTTE

Figure 1. I/O Block diagram

PAGE 46

c. Formatted Print-outs

Not Applicable

4. ~eference Tables

The program makes use of the following tables:

a. USERTAB

b. VERBTAB

E, PROCESSING REQUIREMENTS

1. Top level Flowchart

See Figure 2

2. Narrative

a. Initialize

This routine initializes the interrupt (ATTN
and END) processing routines and the PL/I
error handler. It allocates and initializes
the user data table. The program also
allocates and initializes the verb table
(including user specified commands) which it
uses in the prcmpt routine.

b. Define

This routine performs all of the file control
block allocations and initializations
necessary for the proper operation of the
rest of the NASIS system.

c. Prompter

This routine sets a temporary END condition
handler which results in a new prompt on an
ENE condition. It prompts the user for a
command and searches the verb table for a
matching entry. If no match is found a
diagnostic message is written to the user and
the prompt re-issued.

The verb table entry is analyzed and if an
immediate command has been entered, the
program branches to the routine which
processes that command. Otherwise, the
program optionally establishes a new strategy
and then calls the entry point of the

PAGE 47

processer for the command entered. When
control is returned to DBMTTP, the user is
prompted for the disTcsition of the current
strategy and it is either renewed or
erased.

When the command entered has been completely
processed, control is passed back to the
prompting routine. 7he entry of an END
command causes the program to be
terminated.

F. CODING SPECIFICATIONS

1. Source language

This module is written in the IBM PL/I (F)
language.

2. Suggestions and Techniques

Not Applicable

CRT YPEWRITER
TERMINAL TERMINAL

DBMTTP

Figure 1. I/O Block diagram

PAGE 50

TOEIC B. 1 - EXECUTIVE PRE-PROCESSOR

A. MODULE NAME

Data Base Executive - Preprocessor
Program-It - DE
Module-ID - DE

B. ANALYST

Garth B. Wyman
Neoterics, Inc.

C. MODULE FUNCTION

DB analyzes Data Base PI/I language extension (DBPL/I)
statements and generates, in their place, in a source
program, PL/I statements for communication vith the
Data Base Executive (DEPAC OR DELIST). Diagnostic
comments shall be generated fcr errors that can be
detected by LE during precompilation.

D, DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Job control parameters for operation under OS
are those required for PL/I precompilation
and immediate compilation. Refer to the
appropriate IBM PL/I Programmer's Guide.
The PL/I compiler parameters-MACRO, SOURCE2,
and COMP (aacng cthers) are specified to
indicate that preccmpilinq, Frecompiler input
listing and compilina are desired.

b. Punched Card Input Files

1. DB Text

The DB text deck is all text for
insertion into the source program as a
result of a % INCLUDE DB; statement in
the source program. This text is
composed of the source statements of the
DB preprccessor function procedure,
itself, and any PL/I statements to be

PAGE 51

unconditionally inserted at the
% INCLUDE DB: pocint in the source
program. The tE text is coded as
specified in this report, formatted
according to PL/I source language
standards and catalogued once in a data
set for compile-time use by all programs
using DB.

2. Source Deck

The SOURCE Deck is any PL/I source
program using DB for its DBPL/I
statements. It is prepared according to
the DBPL/I User's Manual (DWB Section V,
Topic B.2) to access a self-describing
data b&se and formatted according to
PL/I source language standards.

c. Input Files

The DB text is catalogued as a member, named
DB, of a partitioned direct access data set
for retrieval by the IBM PL/I precompiler.
The data set is accessed via ddname
LISRMAC.

d. On-Line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The object module consists of the relocatable
machine instructions and constants generated
by the PL/I compiler for the scurce program.
It is stored as a member of a program library
(partitioned data set) for subsequent linking
by the OS system linkage editor.

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-outs

1. Precompiler Listings

Two precompiler listings are produced:
a source listing before precompilation,
and any precomriler diagnostics (these

PAGE 52

diagnostics are any errors in the use of
preprocessor PL/I, not DBPL/I). The
appropriate IBM PL/I Programmer's Guide
explains the listing formats.

2. Compiler listings

The compiler listings produced include
an intermediate source listing (between
precompilinq and compiling) and any
compiler diagnostics. Any errors in the
use of DBPL/I generate diagnostic PL/I
comments in the intermediate source
listing. Serious DBPL/I errors may
result in compiler diagnostics,
particularly for undeclared qualified
names when DB has suppressed automatic
generaticn of a declare statement. The
appropriate IBM/I Programmer's Guide
explains the listing formats.

d. Punched Card Output Files

Not Applicable

4. Reference Tables

MFCB - Mainline file control block.
See Section III, Topic B.4, of the DWB.

DBPL/I - Diagnostic comments.
See Section III, Topic B.1, of the DWB.

DBPL/I - DBPAC Interface.
See Section III, Topic B.2, of the DWB.

DBPL/I - DBLIST Interface.
See Section III, Topic B.10.

E PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Top Level

The mainline PL/I source program is required,
according to the DBPI/I User's Manual (DWB
Section V, Topic B.2), to have a % INCLUDE
DB; statement once in the program before all
DB preprocesscr function references. This
statement directs the PL/I precompiler to
take text from member DB of the partitioned

PAGE 53

data set accessed via ddname tISRMAC and
incorporate it into the source program. (See
the I/O Block Diagram in Figure 1.).

The DB text includes the following
statement:

ON FINISH GO TO FINISH;

for "automatic" data base file closing.
DBPL/I requires that the PL/I FINISH
ON-condition be reserved for this purpose.

The DB text declares and activates the DB
preprocessor name by the following
statement:

% rECLARE DB ENTRY(CHARACTER)
RETUR1NS(CHARACTE~) ;

The DB text following the end of the DB
preprocessor function procedure itself,
invokes DB once as follows:

DB (INITIALIZE)

This statement is a special function
reference to be recognized by DE as the first
reference (directing DB to initialize
itself).

The remainder cf this narrative specifies the
DB preprocessor function procedure itself,
which is depicted in the Top Level Flowchart
in Figure 2.

DB receives one argument from a preprocessor
function reference: a varying length
character string consisting, in general, of
labels, commerts, valid DBPI/I statements
and, possibly, invalid text. DB's objective
is to analyze the argument and generate a
varying length character string, called the
"generated text", consisting of valid PL/I
labels, comments and PL/I statements for
communication with the Data Base Executive.

If the special argument, 'INITIALIZE', is
received, (i.e., the first reference to DB),
the Initialize DB routine is performed and a
comment, such as:

/* DB001 INITIALIZATION COMPLETE. */

PAGE 54

is returned for insertion into the source
program and DB is terminated. Otherwise, the
Argument Initialization routine is
performed.

Following the Argument Initialization routine
is the point where, in general, DB is
logically between DBPL/I statements in its
processing of the argument. The Find
Subarqument routine is performed there. If
it finds the right parenthesis at the end of
the argument, the generated text is returned
for insertion into the source program, and DB
is terminated. If Find Subargument finds an
inter-statement comment, a statement label,
or a null statement (simply a semicolon),
then the subargument is concatenated to the
right end of the generated text (i.e.,
"passed through" to the intermediate source
text), and preprocessor control is
transferred back to the inter-statement
point. Otherwise, the Process Statement
routine is performed, and preprocessor
control is transferred back to the
inter-statement point.

b. Diagnostic Comment Generation

Wherever this narrative specifies the
generation of a diagnostic comment, the
following specifications apply. A diagnostic
comment is concatenated to the right end of
the generated text for insertion into the
intermediate source program, If the
diagnostic is for an error, the precompiler
count of diaqncstics is incremented. If more
than four errors are detected in one DB
reference further processing of that
reference is stopped to prevent the
possibility of unpaired quotes, parentheses
or comment delimiters looping the
preprocessor. A diagnostic has the following
general format:

/* DBnnn diagnostic-message. */

The "DB" preceding the message number
indicates that the comment was generated by
the DB preprocessor. The three-digit message
number guides the user to a more detailed
explanation cf the message which is
documented in the DWB Section III, Topic B.1.
The diagnostic message is concise, and does

PAGE 55

not contain abbreviations.

c. Initialize DB

Precompiler variables for file attributes,
file usages and diagnostic counts are
appropriately initialized. These variables
are subsequently set or incremented as DBPL/I
statements are processed and are examined
when the finish statement is processed. A
precompiler indicator is set to indicate that
the FINISH statement has not yet been
processed.

d. Argument Initialization

The argument is examined to find the left
parenthesis at its beginning. If any other
non-blank character is found, a diagnostic
comment is generated and DB is terminated. A
precompiler variable pointing to the "current
argument character" is initialized to point
to the character following the beginning left
parenthesis. The generated text is
initialized as one blank character.

e. Find Subargument

A subargument, as used in this specification,
is a substring of the argument that is one of
the following classes of syntactic units:

1. The right parenthesis at the end of the
argument.

2. A label, including its colon.

3. An inter-statement PL/I comment.

4. A Null statement consisting only of a
semicolon.

5. A DBPL/I statement terminated by a
semicolon.

6. A syntax error; i.e., none of the
above.

A class (5) subargument may contain paired
parenthesis (rossibly nested) or string
constants enclosed in string quotes. A class
(6) subargument will be terminated by a
semicolon if one is found but will never

PAGE 56

include the right parenthesis at the end of
the argument.

The Find Subargument routine is used at the
inter-statement point in the Top Level
Flowchart. The argument is examined
beginning at the current argument character
and ignoring leading blanks to find the next
subargument. A precompiler variable pointing
to the beginning character of the
subargument, and another indicating its
length is characters, is set. The current
argument pointer is advanced to point to the
character following the subargument.

f Process Statement

This routine is the kernal of the DB
preprocessor; it analyzes a single DEPL/I
statement body (i.e., apart from any
statement labels), generates suitable PL/I
statements for communication with the DBPAC
executive and returns preprocessor control to
the inter-statement point. The PL/I
statements and comments that are generated
are concatenated to the right end of the
generated text string for subsequent
insertion into the intermediate source
program.

A diagnostic comment containing the
subargument and any intra-statement comments
is generated for documentation and for
reference in case of other diagnostics. If
the FINISH statement has already been
processed or if the subargument has a syntax
error, an appropriate diagnostic comment is
generated, and control is returned to the
inter-statement point.

The Find Keyword routine is performed. If it
does not find a keyword that identifies a
DBPL/I statement, tien a diagnostic comment
is generated and control is returned to the
inter-statement point. If the keyword
identifies a SET, FINISH, FREE or ON
statement, control is transferred to the
relevant specific statement routine.
Otherwise, the Find File Clause routine is
performed. If the second clause is not a
FILE clause, a diagnostic comment is
generated, and control is returned to the
inter-statement point. The Find File routine

PAGE 57

is performed, and control is transferred to
the relevant specific statement routine.

1. Find Keyword Routine

A clause, as used in this specification,
is a substring cf the subargument that
is one of the following classes of
syntactic units:

-the semicolon at the end of the
subargument,

-a comma separating DBPL/I
substatements;

e.q., in a multiple OPEN,

-a keyword with an associated
parenthesized argument,

-a keyword without a parenthesized
argument.

A keyword-with-argument clause may
contain paired parenthesis (possibly
nested), cr string constants enclosed in
string quotes.

The Find Keyword routine is used to find
the keywcrd that will identify a
statement to branch to the specific
statement routines.

2. Find File Poutine

The Find File subroutine extracts the
file name from a aiven FILE clause. If
the file-name is not a valid PL/I
external name, a diagnostic message is
generated, and the statement abandoned
by contrcl being transferred to the
inter-statement point. Otherwise, the
precompiler's file table is searched to
determine if the file-name has been used
previously in the program. If it has
not, a new entry is appended to the file
table. In either case, a precompiler
variable is set to indicate the current
file, and contrcl is returned to the
point from which Find File was
invoked.

PAGE 58

3. Specific Statement Routines

Each specific statement routine examines
the statement from left to right until
the semicolon clause is found. (The
CLOSE and OPEN statement routines
recognize a comma clause as separating
substatements and loop accordingly).
The keywcrds are verified for correct
spelling and order. The FREE LIST
routine for specific lists recognizes a
comma separating list-pointers and loops
accordingly. Routines that process a
statement having a FIELD clause
recognize a comma separating field-name
expressions, find the corresponding
element in the FROM or INTO clause and
loop accordingly. If any error is
detected, a diagnostic comment is
generated, and the statement abandoned
by contrcl being transferred to the
inter-statement point.

For those statements having a FILE
clause, the precompiler's file table is
posted to record the file usage (for
analysis in the FINISH routine).

Following successful analysis, each
specific statement routine generates
PL/I statements for communication with
the DEPAC or DBLIST executive and then
loops back either to process another
FIELD or FREE LIST element, to process
another CPEN or CLCSE substatement, or
to the inter-statement point, as the
case may be. Special processing for the
ON and FINISH statements is specified
after the general specifications for all
other specific statement routines.

For those statements having an entry in
the DBPL/I - DBPAC Interface table
(Section III, Topic B.2, of the DWB), an
assignment statement is generated in the
following format:

filename.CPERATICO = 'operation'B;

For example, when processing the
following argument:

LOCATE FILE(SAMPF) KEYFROM(REC#) :

PAGE 59

The following assignment is generated:

SAMPF.OPRATION = '11010000'B;

For statements having a FIELD clause,
the operation assignment need only be
generated once for the statement, even
it it contains multiple field names.

For an CPEN statement having a TITLE
clause the following assignment is
generated:

filename.ONFILE = title-expression;

If it has no TITLE clause the following
is generated:

filename.CNFILE = 'filename:;

For an OPEN statement having an "access"
option and/or a "function" option, a
bit-string value is assigned to
filename.ATTIBUPES according to the
definition of a Mainline File Control
Block (described in Section III, Topic
B.L4 of the DWB); otherwise, the
following assignment is generated for an
OPEN:

filename.FUNCTICN = '10'B;

For each field-name in a FIELD clause,
an assignment statement is generated as
follows:

filename.CNFIEID = fieldname;

Where the field-name may be an
expression, for example, when processing
the following argument:

GET FILE(EXAMF) FIELD ('DATEPUB')
INTO(DP) ;

The following assignment is generated:

EXAMP.ONFIELD = 'DATEPUB';

For those statements having an entry in
the DBPL/I - DEPAC Interface table, a
CALL statement is generated in one of
the following formats, depending on

PAGE 60

whether the "Argl" and "Arg2" columns of
the table have entries:

CALL entrypoint (arql);

CALL entrypoint (argl, arg2):

CALL entrypoint (arql, arg2, arg3);

For example, when processing this
statement:

LOCATE FILE(DAMPF) KEYFROM(REC#);

This CALL is cenerated:

CALL DBPACFV (SAMPF, REC4);

For those statements having an entry in
the DBPI/I-DBLIST Interface Table
(Secticn III, Topic B. 10), a CALL
statement is generated according to the
table.

The ON statement routine examines the
second clause. If an ERRORFILE clause
is found, the Find File subroutine is
performed. The statements shown below
at the right are generated for the ON
statement shown at the left,

ON EPRORFIIE(f) GO TO label;

f.ERROR.POU1INE = label;

f.SYSTEM = 'O'B;

ON EPRORFILE(f) SYSTEM:

f.SYSTEM = ''B;

ON LISTERFCR GO TC label;

LISTERR.ERRCE.ROUTINE = label;

LISTERB.SYSTEM = O'B:

ON LISTERBOR SYSTEM;

LISTERR.SYSTEM = ''B;

The FINISH statement routine sets a
precompiler indicator to indicate that a

PAGE 61

FINISH statement has been processed.
Also, the following statement is
generated:

FINISH: ON FINISH SYSTEM;

Then each entry in the precompiler's
file table is analyzed. If the file was
used inconsistently in the program, a
diagnostic comment is generated and the
next file analyzed. Otherwise, a
Mainline Pile Control Block (MFCB)
declaraticn is generated, using the
file-name as the malor structure name
and as the initial value of the title.
Any file attributes implied by the usage
of the file are generated into the
initial value of the filename.ACCESS and
filename.FUNCTIOCN fields. Statements
are generated to "automatically" CLOSE
the file, just the same as for a CLOSE
statement.

After all files have been analyzed, the
following statement is generated:

FETURN:

In all programs, a declaration of the
entry points to the Data Base Executive
(DEPAC) is generated.

In all cases, a summary diagnostic
comment is generated giving the number
of DB diagnostic error comments in the
program. This completes the FINISH
statement routine specification.

F. CODING SPECIFICATIONS

1. Source Language

The DE preprocessor function procedure is coded
using the preprocessor PL/I statements permitted
in preprocessor PL/I procedures.

Statements to be INCLUDed or generated into the
intermediate source program are coded using
PL/I.

2. Suggestions and Techniques

The DB preprocessor function procedure is coded in

PAGE 62-4

a modular manner so that the syntax analysis of
the argument is separate from the generation of
statements. This modularity will allow much of
the DB coding to be usable for any other
extensions to PL/I that may be designed, such as a
Terminal Support PL/I language extension.

The coding of the specific statement routines are
"table-driven" where possible to facilitate any
future changes in the generated text for a
particular statement.

I PAGE 65

TOEIC B.2 - DATA BASE EXECUTIVE EXECUTICN PFOCESSOR

A. MODULE NASE

Data Base Executive Execution Processor
Program-ID : NDBMPAC (and NDBRFAC)
Module-ID - LEPAC
Procedure Entry Point (ccntrol section name): #FIELD
Other Entry Points - #XREF,DEPACFR,DBPACFP

DBPACPF,DBPACFV,DBPFLDT

(NOTE: This specification is for the module NDBMPAC
which contains INPUT and UPDATE capabilities. Module
NDBRPAC is a subset of this module with only the INPUT
functions.)

B. ANALYST

Garth B. Wyman
Neoterics, Inc.

C. MODULE FUNCTION

DBPAC executes all data base input/output for mainline
programs.

Mainline PL/I programs are written with DBPL/I
statements for data base input/output. (See the DBPL/I
User's Guide, Section 8, Topic E.2). These statements
are processed during compilation and CALL statements
are generated (according to the DBPL/I-DEPAC Interface
Specification, Section 3, Topic B.2). The CALL
statements pass control to the various entry points in
DBPAC. The first parameter passed in a CALL to DBPAC
is a Mainline File Contrcl Block (see Section 3, Topic
B.4). Other parameters are passed for particular
purposes as needed.

DBPAC executes the'request indicated by the operation
code in the MFCB. For physical input/output operations
it CALLs appropriate entries in the RDBTSSIO module.
Whenever DBPAC detects either a loaical error or a
physical input/output error it posts an error code in
the MFCB. (See DBPAC Irror Codes, Section 3, Topic
B.3).

D. tATA REQUIREMENTS

1. I/O Flock Diagram

See Figure 1

PAGE 66

The DEPAC module does not do any terminal
input/output or print any reports.

2. Input Data Sets

In INPUT mode there are no output data sets.

In INPUT or UPDATE mode a data base is the input
to DBPAC. Its descriptor data set is always read
in as part of the CPEN processing and its anchor
and/or associate and/or subfile and/or inverted
index data sets are read depending on the
operations requested by the mainline program.
(See Dataplex Descriptor File, Section 3, Topic
B.7).

In OUTPUT mode only the descriptor data set of the
data base is read as input to DEPAC (during OPEN
processing).

When a mainline program is accessing the
descriptor data set of a data base, "descriptor
descriptor" tables coded in DBPAC are used instead
of an input descriptor data set.

3. Output Data Sets

In UPDATE or OUTPUT mode a data base is the output
from DBPAC. Its descriptor data set is updated as
part of OPEN and CLOSE processing (setting and
reseting the NTNABLE and MNTNING switches). Its
anchor and/or associate and/or subfile and/or
inverted index data sets are updated or output
depending on the operations requested by the
mainline program.

4. Reference Tables

a. DBFL/I - DBPAC Interface (see Section 3,
Topic B.2)

b. DBPAC Error Codes (see Section 3, Topic B.3)

c. Mainline File Control Block (see Section 3,
Topic B.4)

d. List Structure (see Section 3, Topic B.5)

e. Dataplex Descriptor File (see Section 3,
Topic B.7)

f. Inverted Index Format (see Section 3, Topic
D.5)

PAGE 67

g. FLfAB Table (see Section 3, Topic F.10)

SPROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Receive Control

DEFAC receives control by being called from a
"mainline" program. The entries at the
beginning of the mcdule are described here;
entry DBPFLET is described in paragraph "f"
below. All entries receive a Mainline File
Control flock (MFCE) as their first
parameter. DBPAC treats the MFCB as a simple
parameter; that is, EEPAC does not know that
the MFCB is a CCNTWCLIED structure allocated
by the mainline: DEPAC never ALLOCATEs or
FREEs an MFCB.

For the #FIELD and #XREF function entries, an
appropriate operation code is posted in the
MFCB and the seccnd parameter, which is a
file name, is copied into the MFCB. This is
necessary because the function references in
the mainline have not been expanded by the DB
preprocesscr. (At the other entry points,
which are for rEPL/I statements, the
operation code and, if appropriate, the field
name have been posted in the MFCB by
statements preceding the CALL in the
mainline. These assignment statements were
generated by the DB preprocessor.)

The DBPACFR entry handles a user record in
the form of a character string as its second
parameter.

The DBPACFP and DBPACPI entries both handle a
user list pointer as their second parameter.
DEFACPF additionally accepts a user subscript
as its third parameter. A switch indicating
the absence or presence of a user subscript
is set.

The DBPACFY entry handles a user field value
in the form of a varying length character
string as its second parameter. The DBPACFV
entry is also used for all statement calls

PAGE 68

that only pass an M!CB without a second
parameter.

b. Common Code

Handling for PL/I errors that may occur in
DBPAC is initialized so that they will cause
a jump to paragraph "m" below before
returning to the mainline.

If the MFCB is closed and a redundant CLOSE
operation is attempted then control branches
directly to the co-mcn return paragraph "m".
If an OPEN operation or an operation that can
imply opening (most record level operations)
is encountered then ccntrol branches to the
open routine - paragraph "d". If the
operation can not imply opening then an error
is raised: a specific error code is posted in
the MFCB and control jumps to the common
return - paragraph "m". This is an example
of the general method DEPAC uses when it
detects an errcr.

If the MFCE is open the operation code is
checked for validity. Close and open (which
is re-open in this case) operations branch to
the close routine-paragraph "c". Record
operations branch to paragraph "e". Get
operations branch to paragraph "h". Put and
Reput operations branch to paragraph "i". An
invalid operation code raises an error and
jumps to the common return - paragraph "m".

c. Close Routine

The close routine is used for the close
operation and also for the open operation in
re-open cases wben by implication the
dataplex must be closed first, For each data
set in the dataplex the unlock subroutine is
called and the ASMCIOS is called. (The
Unlock subroutine is also used by the record
level operations. It writes or rewrites or
releases any new or modified or locked record
by calling ASMPUT or ASMPUTK or ASMPEL).

If a non-descriptor file was output or
updated then the 1TNABLE or MNTNING switch
in the anchor file descriptor record is
updated by calling ASMECB, ASMFNDS, ASMOPEN,
ASMGETK, ASMPUTK and ASMCLOS on the
descriptor data set.

PAGE 69

For a simple close operation control branches
to the common return, For an open operation
control branches to the open routine -
paragraph "d".

d. Open Routine

The open routine is used for the open
operation and also when record level
operations imply opening. The title value in
the MFCB is dollar sign padded. For implied
open operations, implied access and mode
attributes are assigned. The master userid
is obtained by calling ASMID. For a re-open
operation on the same dataplex with the same
security password, the following descriptor
read-in and File Control Block (FCB)
initialization steps are typassed. For an
open operation on a descriptor data set, a
pointer to the hard-coded descriptor
descriptor table in main storage is posted in
the MFCB and the following descriptor read-in
step is bypassed.

To read in the descriptor records, ASMDCB,
ASHFNDS, and ASMOPFN are called. Then for
each region (describinq one date set) ASMGETK
is called to read the file descriptor record
and ASMGET is called repeatedly to read the
field descriptor records. The file
descriptor's DESCRCT field governs the size
of the adjustable DESC table to be allocated
and how many field descriptors to read. The
applicable RSECTYCE record security mask is
obtained from the file descriptor or a null
mask is assumed. As the field descriptors
are read in, they are checked for valid
format. A descriptor for the RECLEN field is
bypassed except on the first data set. When
the descriptor for the key field is found, it
is stored at the top of the DESC table, other
descriptors are stored sequentially which is
alphabetical by field name. For INPUT mode,
field level SECURITY codes are checked:
failure results in the field descriptor being
bypassed and any dummy descriptor for the
field having its field name nulled. Any
superfield descriptors encountered are
counted for checking later. For the first
data set (the one specified by the TITLE
clause) references tc associate, subfile,
and/or index files are tabulated to govern
which other descriptor regions are to be read

PAGE 70

in. After all the relevant descriptor
regions have been read in, any superfield
descriptors are reread (by calling ASMGETK)
so that their component fields may be checked
(if a component has failed security checking
then the superfield also fails). Finally
ASMCLOS is called to close the descriptor
data set.

The main storage descriptors built during
OPEN are telescoped; i.e. they contain no
dummy descriptors. When associate and
subfile descriptors are read, only the header
and key field descriptcrs are posted to the
DESC table for the data set. For each field
descriptor, the corresponding dummy field
descriptor already in the anchor DESC table
is found and overlaid.

Next for each data set a File Control Block
(FCE) is allocated and a skeleton Data
Control Block is copied into it and ASMFNDS
is called. For OUTPUT or UPDATE mode a null
record is composed in the FCB by finding the
primary field descriptors. After the FCBs
are all initialized, then file and field
subscripts (INVFLCUR,ASSOCCUR,SUBPLCUR, and
RELFLDSS) are determined once for all to save
the need for search loops elsewhere in
DBPAC.

If a non-descriptor file is being opened for
output or update then the MNTNABLE or MNTNING
switch in the anchor file descriptor record
is updated by calling ASMFNDS, ASHOPEN,
ASMGETK,ASMPUTK and ASMCLOS. The first data
set (the one specified by the TITLE clause)
is always opened by ASMOPEN being called. If
it is a descriptor data set, it is positioned
to the specified region by calling
ASMSTLK.For output or update, any subfile
data sets in the dataplex are opened and the
highest id-kev in use is found in the
descriptor header record for the subfile,
DESC.HDR.ID_KEY_REG. If the operation was an
explicit open them ccntrcl branches to the
common return. Otherwise it was an implicit
open and control proceeds to the record
routine.

e. Record Routine

The record-level routine is used for WRITE,

PAGE 71

LOCATE, REAr and UNLOCK operations. The
WRITE operation is handled separately by
calling ASMPUTK and tranching to the common
return.

If the statement has a SUBFILE or an INDEX
clause then the field name is found in the
DESC table to determine the data set for the
operation. For output or update, the Unlock
subroutine is called for the particular data
set or for the anchor and associate data
sets. (The Unlock subroutine is also used by
the close routine. It writes or rewrites or
releases any new or modified or locked record
by calling ASMPUT or ASMPUTK or ASMREL.) For
any UNLOCK operation control branches to the
common return.

For LOCATE and READ orerations, the element
GET cursors are reset for the particular data
set or for the anchor and associate data
sets. The LOCATE SUBFILE operation is
handled separately at this point: control
branches into the Put routine to find the
anchor or associate control field for the
sutfile. A subrecord id-key is determined
from the highest id-key in the control file
or, if it is null, from the highest id-key
previously used in the subfile. This highest
id-key is found in the header descriptor for
that subfile, EESC.REF.ID_KEY_REG, A current
sutrecord is built by copying the null record
built by the open routine, posting the new
id-key and posting the parent key field by
copying the anchor key field. Control
branches into the Put routine again to put
the new element into the control field. To
better ensure dataplex integrity, the anchor
or associate record containing the control
field is immediately written or rewritten
and reread by calling ASMPUTK and ASMGETK.
If the control field is on an associate and
the anchor record was newly located then it
is written and reread too. The LOCATE
SUEFILE operation is thus complete and
control transfers to the common return.

If a particular subfile or index data set has
not been opened by this point (for a READ
operation) it is opened by a call to
ASEOPEN.

Since the highest id-key is maintained in the

PAGE 72

sutfile descriptor header record, whenever a
LOCATE SUBEFILE is performed the subfile
header record is re-written at CLOSE time.

An anchor LOCATE operation is handled
separately at this point: control branches to
the Validate key routine (described with and
also used by the READ KEY operation) and then
an attempt is made to read the new key using
ASMGETK. If the new key is found, the record
is made current (just as if a BEAD KEY
operation had teen requested) and an error is
raised. Normally, the new key will not be
found and a current anchor record is built by
copying the null record built by the Open
routine (or, for a descriptor data set, a
hard-coded null file or field descriptor
record is copied) and the new key valve is
posted in it. The LOCATE operation is thus
complete and control transfers to the common
return.

The remainder of the Record routine processes
the various BEAD operations. Spanned index
reads are handled separately at this point:
their fundamental objective is to make the
last record of a spanned region current. For
read INDEX forwards rEPAC attempts to read
with a suffix of 00 hex. If successful,
forward sequential reading is done until the
end of the region is passed. Then, a direct
read by key is made using the last suffix
encountered for the region. For read INDEX
KEY the validate key routine (described
later) is used. Then for all types of read
INDEX, ASMGET is called to read the last
record of the new region. The read spanned
INDEX operation is thus complete and control
transfers to the common return.

Normal (un-spanned) reads are processed as
follows. For read forwards, it is
unnecessary to do any file positioning. For
read PER SUEFILE, the parent key value is
taken from the current subrecord for use
without validation. For read by KEY, the
Validate key routine is used. The Validate
key routine (also used for LOCATE KEYFORM)
calls the generic conversion routine, if
specified in the key field descriptor, and
then calls the validation routine, if
specified, using "CALI CAEL" service for both
purposes. For read LIST, the appropriate key

PAGE 73

value is taken from the list (next forward,
next backward, or by subscript) for use
without validation. Then for all non-locking
direct reads (PER SUEFILE, by KEY, or from
LIST), ASMSTLK is called to position to the
desired record. Now the file is positioned
for all reads (except direct locking) and
ASMGET is called to actually read the desired
record. Then if the record is to be locked
and for direct locking reads, ASMGETK is
called to reread or read the record and lock
it for exclusive use. Next, for INPUT modes,
any record level security checking is done;
if it fails and it was a sequential read
(forwards or backwards), cortrol loops back
to do another sequential read until a record
that passes security or end-of-file is
encountered. If record security fails for a
direct read, a key-nct-found error is raised.
For reading a descriptor data set only, the
region is compared to determine if the read
stayed within the region that was opened and
the key is checked to determine if a file or
a field descriptor was read so that the
pointer to the appropriate hard-coded
descriptor descriptor table can be posted in
the MFCB to govern subsequent field level
operations. If an anchor record was read,
then all subfiles are checked: any having a
current subrecord with a different parent key
to the new anchor key are marked "not
current". If a subfile record was read, then
the anchor and all other subfiles are
checked: any having a current (sub) record
with a different (parent) key to the new
subrecord's parent key are marked "not
current", Normal (un-spanned) read
operations are thus complete and control
transfers to the common return.

f. DBPFLDT Entry

The DBPPFLDT (Post FLETAB) entry is provided
to build a Field name Table by reference to
DEPAC's main storage descriptor tables built
by the Open routine. This entry is not
supported by a DBPL/I statements a mainline
program must:

i. execute a DBPL/I OPEN statement or a
record level statement implying
opening.

PAGE 74

ii. "CALL DBPFLDT(mfcb); where mfcb is the
file name of the dataplex that was
opened.

iii. have a "X INCUDE IISBMAC(FLDTAB):"
statement to copy in the declaration for
FLDTAB, Use of this entry is optional;
DBPAC makes no use of FLDTAB.

g. FLDTAB Routine

The FLDTAB routine is entered only from the
DBPFLDT entry described above. FLDTAB is
allocated or freed and reallocated with its
size adjusted to hold the number of field
names in the dataplex. The data base name is
posted without trailing dollar signs. The
FLDTAB routine then sets up the main storage
descriptor table linking a pointer chain,
DESCFLD.FCP, starting with the anchor key
descriptor connecting all fields, except
RECLEN, in the pre-defined format 4 order.
SEQ_FORMAT.# in FLDTAB is posted with the
field counts for formats 1 through 5.
Retrieval field name functions are supported
with the DBFIDU module. In addition, the
DESC FLD.GROUP indicator is posted as '1',
'2', or '3' tc show the field is available
from the anchor alone, from one or more
associate records, or from a subfile record,
respectively. The FIDTAB routine is thus
complete and control tranches to the common
return.

h. Get Routine

The Get routine is used for all GET
operations and for the #FIELD and #XREF
functions.

When a field name has been passed or posted
in the MFCB, it is found in the DESC table
to determine the data set for the GET:
otherwise, the first data set (the one
specified bv the OPEN TITLE clause) is
implied.

If that data set does not have a current
record, then for the #XREF function a zero is
returned. If it is the anchor data set and
any subfile has a current record, its parent
key will be used to read (using ASMGETK).
The anchor record whose record security will

PAGE 75

be checked- if it fails, a null value will be
returned and ccntrol branches to the common
return or, for #FIELD, a zero is returned.

The GET RECORD operations is handled by
copying the record from the FCB to the user's
string and branching to the common return.

For the GET LIST SET statement and GET INDEX
LIST SET statement the cross-reference field
descriptor is found and ccntrol branches down
to the Get Field routine.

For the GET KEY SET, GET SUBFIIE KEY SET and
GET INDEX KEY statements the appropriate key
descriptor is found and ccntrol branches down
to the Get Field routine.

For the #XREF function the cross-reference
field descriptor is found and control
branches down to the Get Field routine.

For GET FIELD, #FIELD and GET SUBPILE LIST
SET if the descriptor found previously was a
dummy, then the corresponding real descriptor
must be found in an associate descriptor
table. For GET FIELD and #FIELD of a
superfield, a loop is initialized to take
each component field, starting with the
first, find its read descriptor and record
(using ASMOPEN and ASMGETK for an associate
record if necessary) and perform the Get
Field routine repeatedly until the superfield
has been composed or its count determined.

The Get Field routine uses the current record
of the current data set and a direct field
descriptor and its file descriptor to extract
a field value. It handles a bit field, a
fixed length byte field, a simple variable
field, a fixed length element of a
multi-element field cr a variable length
element of a multi-element field.

GET KEY SET operations are handled separately
after the fixed length key has been
extracted. The key value is posted and
control branches to the common return.

GET LIST SET operations are handled
separately after the multiple fixed length
element field has been found. For the
SUEFILE option the subfile id-key field name

PAGE 76

is found in the sutfile descriptor table.
For an index cption, if the index is spanned
and the last suffix is greater than zero, the
first record in the region is read using
ASMGETK and control branches back to the Get
Field routine. A list is posted with the
whole multi-element field value. For a
spanned index, if the suffix is less than the
last in the region, then the next index
record is read using ASMGET and control
branches back to the Get Field routine; this
repeats until the whole region has been
copied into list segments and the data set is
positioned at the last record of the region
again. GET LIST SET operations are thus
complete and ccntrol branches to the common
return.

The #FIELD function is handled for the null
and real value cases of all five types of
direct fields and for the case of an empty
associate data set or an absent associate
record. Superfields are handled by
effectively evaluating #FIELD for each
component to determine the net count. The
#XREF function for a spanned index calculates
the number of cross-references cn records
preceding the last in the region by assuming
full maximum length records and adds the
number of cross-references on the last
record. The #FIELD and #XREF functions are
thus complete and return their function value
directly (without trancbing to the common
return).

The GET INTO operations are handled for the
null and real value cases of all five types
of direct fields and for the case of an empty
associate data set or an absent associate
record. When the external form of the field
is needed and a reformatting routine is
specified in the descriptor, it is called
using "CALL CALL" service. Superfields are
handled by looping back to get each component
field and concatenating them together; if the
superfield descriptor specifies a
reformatting routine, it is called using
"CALL CALL" service. The GET INTO operations
are thus complete and control branches to the
common return.

•i Put Routine

PAGE 77

The Put routine is used for PUT and REPUT
operations. The field name passed in the
MFCB is found in the DESC table to determine
the data set implicated. If it is an
associate data set, it is opened, if
necessary, by calling ASOPEN and read, if
necessary, by calling ASMGETK and if the
record is absent a current associate record
is built by ccpving the null record built by
the open routine and the anchor key value is
copied into it. If a generic conversion
routine is specified in the field descriptor,
it is called using "CALL CATI" service. If a
validation routine is specified, it is called
using "CALL CALL" service. If an anchor key
or a subfile id-key is being REPUT to null,
then ccntrol branches to the Delete routine
described in paragraph "j" below.

Using the current record of the current data
set and a primary direct field descriptor and
its file descriptor, a bit field, a fixed
length byte field, a simple variable field, a
fixed length element of a multi-element field
has a new value PUT or REPUT into it. For a
fixed length field or element, the new value
is justified right or left depending on the
NUMALIGN switch in the field descriptor. For
a variable length or multi-element field, the
field length and record length (RECLEN field)
are adjusted as necessary. If the field is
indexed and had a non-null value, then the
Delete XREF subroutine (described in
paragraph "I" below) is called. If the new
value is non-null and the field is indexed,
then the XREF subroutine (described in
paragraph "k" below) is called. The PUT and
REPUT operations are thus complete and
control branches to the common return.

S Delete Routine

The Delete routine is used when an anchor key
or a subfile id-key is being REPUT to null.

Nulling a sutfile id-key indicates that a
subrecord is to be deleted. The subfile
control field descriptor is found and if it
is on an associate, the associate data set is
opened, if necessary, by calling ASOPEN and
read, if necessary, by calling ASMGETK. The
control field element is found and excised
and the field length and RECLEN are

PAGE 78

decremented. Then the subfile descriptors
are searched: for all indexed fields, the
Delete XREF subroutine (described in
paragraph "l" below) is called for each
element value. Finally the subrecord is
deleted by calling ASMDELR and control
branches to the common return.

Nulling an anchor key indicates that an
anchor record and its associated and
sulordinate records are to be deleted. The
anchor descriptors are searched for subfile
control fields and for indexed anchor or
associated fields. If a control or indexed
field is found on an associate data set, it
is opened, if necessary, by calling ASMOPEN
and read, if necessary, by calling ASMGETK.
For each control field, the subfile is
opened, if necessary, by calling ASMOPEN and
each element is used to read a subrecord
using ASMGETK. The subfile descriptors are
searched for every subrecord: for all indexed
fields, the Delete XREF subroutine is called.
Each subrecord is deleted by calling ASMDELR.
During the anchor descriptor search, when an
indexed anchor or associate field is found,
the Delete XREF subroutine is called.
Finally the associated records and the anchor
record are deleted by calls to ASMDELR and
control branches to the common return.

k. XREF Subroutine

The XREF subroutine is called from the Put
routine when a non-null value is PUT or REPUT
to an indexed field. If INDEXEXT and a
reformatting routine are specified, it is
called using "CALL CALL" service to transform
the value to the form in which it is to be
indexed. The inverted index data set is
opened, if necessary, by calling ASMOPEN.
Then an index read is attempted using ASMGETK
(with a suffix of zero if it is spanned). If
the record is not found, then the null record
built by the Open routine is copied, the
crcss-reference and the indexed value are
copied in, it is written by calling ASMPUTK
and control returns to the calling program.

If an index record is found, then its highest
(rightmost) cross-reference value is compared
with the new cross-reference. If the new
reference is lower, then the insertion point

PAGE 79

is found by a binary search and the new
reference inserted; otherwise the new
reference is appended. If the index is not
spanned or if the region only needs one
record, the cross-reference field length and
RECLEN are incremented, the index record is
rewritten using ASMPUTK and control returns
to the calling program.

In a spanned index region when the zero
suffix record is full, if its last reference
is less than or equal to the new reference
then it is released by calling ASMREL:
otherwise the insertion point is found by a
binary search, the new reference is inserted,
the last reference overflows to become the
new reference to be propagated forward, and
the record is rewritten using ASMPUTK,. The
suffix is incremented and control loops back
to attempt a read of the next record of the
region. This continues as long as full
records are found, finally a short record is
found to append to cr a fresh record is
created and the process is completed like a
non-spanned case and control returns to the
calling program.

1. Delete XREF Subroutine

The Delete XREf subroutine is called from the
Put routine when an indexed field that had a
non-null value is being REPUT. It is also
called exhaustively by the Delete routine for
indexed fields. If INDEXEXT and a
reformatting rcutime are specified, it is
called using "CALL CALL" service to transform
the value to the form in which it was
indexed. The inverted index data set is
opened, if necessary, by calling ASMOPEN. If
the index is spanned, the index region is
read forward to find the last record in the
region. Whether or not the index is spanned,
ASMGETK is called to read the index record
(with the highest suffix if it is spanned).
If the index is not spanned or if the region
only has one record, then the cross reference
is found by a binary search and excised, the
cross-reference field length and RECLEN are
decremented, the index record is rewritten
using ASMPUTK and control returns to the
calling program. In the exceptional case of
the index record only having the one
cross-reference, it is deleted using ASMDELR

PAGE 80

and control returns to the calling program.

In a spanned index region having more than
one record, the lowest (leftmost)
crcss-reference value is examined before the
binary search. If it is greater than the
crcss-reference to be deleted, then the whole
cross-reference falls off to be rolled
backward in the region. The record is then
rewritten (with the field length and RECLEN
decremented if necessary) using ASMPUTK or
deleted using ASMDEL, Then the previous
record is read using ASMGETK with the next
lower suffix and the lowest cross-reference
examined. This process repeats rolling one
crcss-reference backward in the region until
the record is found with a lowest
crcss-reference less than or equal to the one
to be deleted. The cross-reference is found
by a binary search and excised, the rolled
cross-reference from the record just
processed is posted at the right end, the
record is rewritten using ASMPUTF and control
returns to the calling program. If the cross
reference is not found on the record, it
belongs on then the record is released using
ASMREL and in the simple case control returns
to the calling program; the intent has been
accomplished. However, if rolling back had
been started in a spanned region, one
cross-reference is still in limbo, so control
branches into the XREF subroutine which will
roll one cross-reference forward from that
point to reconstruct the region before
returning to the calling program: this should
be an extremely infrequent occurrence.

m. Return

The common Return is used by all routines.
The only exception is that when the #FIELD
or #XREF functions complete successfully they
return directly.

When an error has been detected, an error
code is posted in the MFCB. The address of
the HFCB is pcsted in DBEFCBP to assist any
mainline having multiple MFCBs. If the
mainline has a current DBPL/I CN ERRORFILE GO
TO ... action, then RETRNPT is called to post
MFCB.ONRETURN and DBPAC is left by branching
to the mainline label in MFCB.EPROR.ROUTINE,
Otherwise DBPAC is left by signalling the

PAGE 81

PL/I ERROR condition which, unless the
mainline catches it, will terminate the
mainline prcgram.

Normally, DEPAC is left by a simple PETURV
statement and control returns to the mainline
that called.

F. CODING SPECIFICATIONS

1, Source Language

DBPAC is written in PL/I. The DB preprocessor and
DBPL/I are not used in DEFAC. Various Assembler
language subroutines are used as mentioned in the
Processing Requirements Narrative,

2. Suggestions and Techniques

When a desired field descriptor has been found by
subscript in the tables, its address is held in a
pointer variable and based structure references
are used to avoid frequent re-evaluation of the
subscript. Similar techniques are used whenever
possible.

Binary search techniques are used to maintain the
cross-reference lists in inverted index records in
ascending sequence.

The facilities available in the DBDEIO module are
used to the best possible advantage with the OS
ISAM access method.

The DBPAC module is designed and iuplemented to be
reentrant under multi-programming; automatic,
controlled and based storage are used
appropriately. One known exception is that the
main storage descriptor descriptor tables are
static for efficiency: if two or more users
attempt to access the same descriptor data set
region concurrently they may encounter
interference on the multi-element field cursors
(only RSECTYCD, NAMEFLD and SECURITY fields are
affected).

DATA
DBPAC 1 DBDBIO d BASE

Figure i. I/0 Block diagram

PAGE 84

TOTIC B.3 - EXECUTIVE ASSEMBLER PRCGRAMS

A. MODULE NAME

Executive Assembler Program
Program-ID - NDBDBIO
Nodule-ID - DEDBIO

B. ANALYST

Connie D. Becker
Edward J. Scheboth, Jr.
Neoterics, Inc.

C. MODULE FUNCTION

This program works in conjunction with the Data Base
Executive Prcgram (NDBPAC) and provides the assembler
language macros required to handle the input, output
and updating of ISAM files, as well as the handling of
error conditions.

These ISAM files are the files of a dataplex and the
Data Base Executive will call the Executive Assembler
Program when it needs an I/O operation performed.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a, Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

All of the files which make up a dataplex
could conceivably be input, including
descriptor files. The only real restriction
is that the files be ISAM.

d. On-line Terminal Entries

Not Applicable

PAGE 85

3. Output rata Sets

a. Output Files

Same as input files.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

This program is designed to handle the input and
output functions for the Data Base Executive
(NDBPAC). It deals strictly with ISAM files.

The program is divided into many routines, and
each of these routines has a unique function. The
Data Base Executive (NDEPAC) calls these routines
individually to perform the various functions
which are required. Associated with each of these
calls is the passing of the required parameters.

The Data Base Executive is required to perform the
various calls to the Executive Assembler Routines
in a logical order.

The abilities of these assembler routines are
comprehensive enough to handle any situation which
might arise in the Data Base Executive. This
includes the abilities to: open files for input,
output, or update; read the file sequentially,
read the file by key, position the file to the
beginning, or the next record; and close the file.
For example, if the Data Base Executive were

PAGE 86

required to open a dataplex in the update mode and
process records, the sequence of calls would be as
follows:

CALL ASMDCB (parameters)
establish the files DCB (data
control block).

CALL ASMFNDS (parameters)
link the DCB with the JFCB (job
file control block).

CALL ASMOPEN (parameters)
open the file.

CALL ASMGETK (parameters)
read a record by key.

CALL ASMPUTK (parameters)
rewrite the record.

CAll ASMCLOS (parameters)
close the file.

DBDBIO is called from the Data Base Executive
(NDBPAC). If no errors are detected by the
assembler routines, the error switch (one of the
parameters) is set equal to zero upon return to
NDBPAC and the return is to the specified 'Good'
return address (one of the parameters). If an
error is detected by the assembler routines, the
error switch is set with the proper error code and
the return is to the next sequential instruction
in NDEPAC. The error codes will have the
following values when an error occurs in ASMOPEN,
ASMPUTK, ASMGETK, ASMGET, ASMPUT, ASMSETL,
ASMESTL, ASMREL, ASMCLOS, ASMDELB or ASMSTLK:

a. 08 - key not found
b. 12 - sequence errcr
c. 28 - LPECI greater than MAX
d. 31 - position past end of D.S.
e. 44 - no space for record
f. 48 - invalid I/O area
q. 52 - invalid I/O request
h. 56 - duplicate record
i. 60 - DCB was closed
1. 64 - overflow record
k. 68 - uncorrectable I/O error
1. 72 - no key lenqth specified

The assembler routines will add 100 to all of the
above error codes prior to returning to the Data

PAGE 87

Base Executive (NDEPAC). The end of data exit
sets the error switch to 99. The error switch is
a fixed binary half-word.

The PL/I calls for ASMOPEN, ASMPUTF, ASMGETK,
ASMGET, ASMPUT, ASMSETI, ASMESTL, ASHREL,
ASMCLOS, ASMDELR, and ASMSTLI are illustrated in
Table 1.

The first parameter is always the DCB address (DCB
means Data Control Block). The second parameter
is the record area, except for:

a. The open (ASMOPEN) - in this instance, it is
a one byte function code -

I = input
0 = output
U = update

b. The close (ASMCLOS)
ESETL (ASMESTL)
STLK (ASMSTLK)
REL (ASMREL) - in these instances, it
is a one byte dummy character (no
meaning.)

c. The DELREC (ASPDELR) - in this instance, it
is the key.

d. The SETL (ASMSETL) - in this instance, it is
a one byte function code -

B = beginning
N = next

The third parameter indicates the routine to which
return is made if there are no errors.

NOTE: The error switch parameter for the
following routines must be preset.

a. ASMGETK - 01 (Read by key)
00 (Read by key exclusive)

b. ASMPUTK - 01 if KT(Write)
00 if KS(Rewrite)

The routines and their functions are as follows:

a. ASMFNDS: This routine obtains the DDNAME for
an associated DSNAME and posts it in the
DCE. The DSNAME must appear in the JCL for
the job step currently being executed.
"ASMFNDS" has an associated entry point

PAGE 88

"INTYNDS" which does initialization for
"ASMFNDS" for a particular jobstep. it
should be called during initialization for
the applicaticn. It is a simple calll of
form:

CALL INTFNDS OR L R 15,=V(INTFNDS)BALR R
14,R15

The parameters required for successful
execution of the FINDtS are as follows:

1. The DS name (35 characters)
2. The DCP address
3. The owner's ID
4. The error switch (key length)

b. ASMERSE= This routine erases the
direct-access storage for a data set. In
addition, it will remove the entry for a
catalogued data set from the catalog. The
DSNAME passed is padded with blanks to 35
characters. If a stored data set is opened
by many users concurrently, a particular user
cannot erase that data set until every other
sharer actively using that data set issues a
close.

Once a user is the only currently active task
using the data set, be may erase it
regardless of whether he has closed it or
not.

The parameters required are the DSNAME and
the error switch.

NOTE: For both ASMFNDS and ASMERSE, the
error switch upon return to the Data
Base Executive is equal to zero only if
no error occurred.

c. ASMOPEN: This routine connects the data set
to the system by completing the DCB
(containing the attributes), indicates the
manner in which the data set is to be
processed and positions the data set for
processing. The address of the SYNAD routine
(SYNADETN) and the address of the EODAD
routine (EODADRTN) are posted to the DCB.
The address of the save area is also posted
to the DCB.

The parameters are as follows:

PAGE 89

1. The DCB address
2. The function code
3. The 'Good' return address
4. The error switch

d. ASMPUTK: This routine moves a selected
record from a user specified area to an
output buffer. The system then includes the
record in the output data set by key. This
operates in one of two modes: Rewrite (KS)
or Write (KT). Write releases any page level
interlocks set for the data set. The
parameters are as follows:

1. The DCB address
2. The record area (address)
3. The 'Good' return address
4. The error switch (preset:

0 means Rewrite (KS),
1 means Write (KT)).

5. The key (address)

e. ASMGETK: This routine obtains a selected
logical records from an input data set and
moves it to a user specified area.

The parameters are as follows:

1. The DCB address
2. The record area (address)
3. The 'Good' return address
4. The error switch
5. The key (address)

f. ASMGET: This routine obtains the next
sequential record and moves it from an input
buffer to a user specified area. The
parameters are as follows:

1. The DCB address
2. The record area
3. The 'Good' return address
4, The error switch

g. ASMPUT: This routine has the same parameters
as the ASMGET routine. However, instead of
reading a record, it writes a record.

h. ASMSTLK, ASMSETL: These routines position a
data set. The parameters for both routines
are as follows:

1. The DCP address
2. The code : K (by key)

PAGE 90

B (beginning)
N (next)

3. The 'Good' return address
4. The error switch
5. The key (address, for ASMSTLK only)

i. ASMESTL: This routine repositions the
pointer to the beginning of the file. This
is automatically done in AS.MGETK, ASMSETL,
ASMSTLK.

The parameters are as follows:

1. The DCE address

J. ASMDELR: This routine flags a record for
deletion from an ISAM file. The parameters
are as follows:

1. The DCB address
2. The key
3, The *Good' return address
4. The error switch

k. ASMCLOS: This routine closes the file
(ISAM).

1. SYNADRTN, EODADRTN: When an end of file or
some error is detected during any of the
routines in this program, these routines set
the proper error code in the error switch and
return control to the Data Base Executive for
appropriate action.

m. ASrECB: This routine takes the DCE created
in this program and moves it to the user's
specified area. The only parameter is the
user specified area (atdress).

n. ASMXTR, ASMPASS, ASMMUST: These entry points
simply transfer contrcl to the MTT monitor
to maintain linkage conventions.

F. CODING SPECIFICATIONS

1. Source Language

Unlike most other modules for the NASIS system,
the Executive assembler program (DBDBIO) is
written entirely in Assembly language.

2. Suggestions and Techniques

PAGE 91

a. Special attention is paid to the linkage
conventions of the current PL/I compiler.

b. The Data Base Executive, by design, is the
primary user of this proqram. However, the
program is written so that programs other
than the Data Base Executive can use it.

NDBPAC DBDBIO BASE

Figure 1. I/0 Block Diagram

EXT II

ENTRY ASMERSE
OROUTINE

ENTRYRY SMFNDS T

Fgr 2-OUTINE

ENTRY ASMOPEN
ROUTINE FROM VISAM

4R T'T I ERROR

EDETECTION

qjEX IT I

E N T R Y - A SMGRTK EODADRTN

x ENTRY ASMGET L SYNADRT
"ROUTINE ROUTINE

S W ENTRY
-4 ;.,; ASMPUT, GETRECRD

SROUTNW ROUTINE

ENTRY ASMESTL

ENTRY
ASMDELR

EXIT -

ASMCLOS

ENTRY hASMDCB

Figure 2 - Top level flow chart.

PAGE 95

TOFIC B.4 - DATA BASE EXECUTIVE CONVESICN AND REFCRMATTING
ROUTINES

A. MODULE NAME

Standard Conversion and Reformattinq routines for the
Descriptor Editor and the Data
Base Executive.

Program-ID - NDBEXITS
Module-IE - DEEXITS

Entry Points - See Table 1.

B. ANALYST

Garth B. Wyman
Neoterics, Inc.

C. MODULE FUNCTION

This module provides 31 standard general field
conversion and reformatting routines. They are called
by the Data Base Executive field processing routines
(PUT, GET, and REPUT) if they are specified in the
field descriptor record. The routines are written
according to the DBPAC Exit Routines User's Guide
(Section 8, Topic B.1) and may be used for user's
database fields, if desired.

D. DATA REQUIREMENTS

Not Applicable

E. PROCESSING RIQUIREMENTS

1. Top Level Flowchart

Not Applicable

2. Narrative

The conversion routines (DBCVT_) are for use
during PUT or REPUT field processing. They all
accept a varying length character string argument
and all allow the value to have leading and
trailing blanks. They check the argument value
according to the Notes in Table 1. If the
argument value is invalid, they return with the
BAD parameter left set. Otherwise they copy the
value or convert it to the internal form and
length shown in Tatle 1, reset the BAD parameter
switch and return.

PAGE 96--

The reformatting routines (DBFMT__) are for use
during GET field processing. They all accept a
varying length character string argument (from the
dataplex). If the argument length is not as shown
under "Internal bytes" in Table 1, then the
routine is being misused and the value "BAD. HEX="
is generated followed by the hexadecimal expansion
of up to eight bytes of the argument. Normally
the internal form of the value is reformatted to
the external form and control is returned. These
routines all produce exact length output (i.e.
without leading or trailing blanks).

F. CODING SPECIFICATIONS

1. Source language

PL/I with no DHPL/I statements.

2. Suggestions and Techniques

Not Applicable

PAGE 98

TOFC 8.5 - LIST MANAGER

A, MODULE NAME

Program-ID: NDBLIST
Module-ID: DBLIST

B. ANALYST

George Oswald,
Neoterics, Inc.

C, MODULE FUNCTION

NDBLIST will be responsible fcr all requests for keys
from an existing SET. It will ccntain the following
functions in order to provide this facility. The
DEPL/I statements handled by this module are as follows:

1. FREE LIST
(a) General
(b) Specific

2. GET LIST INTERNAL KEY INTO
3. GET LIST KEY INTO
4. GET LIST KEY(O)
5. GET LIST KEY SET
6. COPY LIST
7. LIST
8. #LIST
9. PUT LIST INTERNAL KEY FRCM

10. SET LIST LIKE LIST

The Free temporary list and Unique list functions are
called directly. The module will be called via PL/I
conventions (DB Preprocessor Statements) and will
use the facilities of SET Manager via PL/I calling
conventions.

D. DATA REQUIREMENTS

1. I/O BLOCK DIAGRAM

Not Applicable

2. Input Data Sets

Not Applicable

3, Output Data Sets

Not Applicable

PAGE 99

4. Reference Tables

a, SET CONTROL BLOCK (SCB)

b. LISTEER

E. PROCESSING REOUIREMENTS

1. Top Level Flowcharts

la. FREE LIST (General)

ENTRY: DEPAC, see Figure la.

lb. FREE LIST (Specific)

ENTRY: DBPACT, see Fiqure lb.

2. GET LIST INTERNAL KEY INTO

ENTRY: DEGLIK, and

3. GET LIST KEY INTO

ENTRY: DBGLKI, see Figure Ic.

4. GET LIST KEY(O)

ENTRY: DEGIKO, see Figure id.

5. GET LIST KEY SET

ENTRY: DBGLKS, see Figure le.

6. COPY LIST

ENTRY: DUPLIST, see Figure if.

7. LIST

ENTRY: LIST, see Figure 1g.

8. 41IST

ENTRY: #LIST, see Figure hlb.

9, PUT LIST INTERNAl KEY FROM

ENTRY: DBPLIK, see Figure ii.

10. SET LIST LIKE LIST

ENTRY: DESLLL, see Figure 1j.

PAGE 100

11. FREE TEMPORARY LIST

ENTRY: DEFREET, see figure 1k.

12. UNIQUE LIST

ENTRY: ULIST, see Figure 11.

13. Internal Routines

a. GET, see Fiqure Im.

b. ERROR CONTROL, see Figure In.

c. FINISH LIST, see figure Io.

14. Narrative

NDBLIST provides an interface between a user's
request for manipulation of a list and the SET
Manager. The intenticn being:

1. Maintain the DEPL/I LIST statements as they
are now defined by the NASIS system.

2. Isolate the manipulation of SET's to a
single module (SET Manager).

3. Provide minimal amount of coding to support
items 1 and 2.

In general, the NDBLIST functions will perform a
minimal amount of data manipulation. This means
that the requirements of each function are
basically three:

1. Validation at Time of Entry

2. Call to SET Manager

3. Return Variables to Caller

The main exception is the LIST function which
logically combines twc existing sets into a
third set and returns an address of the new set.

The entry points to the NDBLIST will be as defined
by DBPL/I. This retains the integrity of a
user request (PL/I coded) for the NDBLISTM
functions.

a. FREE LIST

PAGE 101

A request to free a General or Specific
list is an ERASE CALL to the SET Manager,

b. GET LIST INTERNAL KEY INTO

This entry requests a key via SET Manager from
a current set (by set pointer) and returns
to the user a variable string containing
the key.

c. GET LIST KEY(0)

This will request via SET Manager that a
current set's get cursor be reset to point
to the first key within the set. This
will be through a CLOSE CALL.

d. GET LIST KEY INTO

The entry will call SET Manager requesting a
key from a current set (ty set pointer). If
the requested set indicates a conversion is
necessary, the appropriate conversion routine
will be called. eturned to the user will
be a variable string containing the (converted)
key,

e, GET LIST KEY SET

The entry will call SET Manager requesting a
key from a current set (by set pointer). If
the reauested set indicates a conversion is
necessary, the appropriate conversion routine
will be called. Returned to the user will be
a variable string containing the (converted)
key,

e. GET LIST KEY SET

This entry will request a key from SET Manager
and then write a key via SET Manager to a
new or existing set. Returned to the user
will be a pointer to the new list,

f. COPY LIST

Duplicates an existing list.

g. LIST

This entry allows a user to combine two
existing sets by a looical operation:

PAGE 102

()1 Logical OR, 'I' (vertical). If the
key is present in either set, the key
is placed in the new set.

(2) Logical AND, '' (ampersand). If the
key is present in both sets, the key
is placed in the new set.

(3) Logical NOT, '-' (minus sign). If the
key is present in set 1 but not in set 2,
then the key is placed in the new set.

It is possible for either the argument
set (1) or the function set (2) to be NULL.
The logical operation will return a pointer
to either set or a NULL set.

Returned to the user is a set pointer to the
new list.

h. #LIST

This entry requests the number of keys in a set
and returns a variable containing the value.
(Does not call SET Manager).

i. PUT LIST INTERNAI KEY FRCF

This entry will ottain (a) key(s) from a
user's variable and write it via SET Manager
to an existing set.

J. SET LIST LIKE LIST

This entry will perform an OPEN CALL of a
new set and return a set pointer to the
user. The new set will have the same
characteristics as the existing set,

k, FREE TIMPORARY LIST

This entry loops through the list chain and
frees (calls SETERAS) for every list without
its SCE.PERMEN bit on.

1. UNIQUE LIST

This entry creates a new list of non-duplicate
keys from an input list. If no duplicates
are fcund, the oriainal list is returned
as the new list.

F. CODING SPECIFICATION

PAGE 103

1. Source Language

This module will be coded in PL/I.

2. Suggestions and Techniques

The LIST Manager will call the SET Manager via
PL/I calling conventions. The structure
LISTEFF will be used as the communicator
between the SET Manager and the LIST Manager.

An attempt will be made to maintain all
structures and processing techniques so as
to negate any changes to the modules
requesting the use of the LIST functions.

DBPAC

YES END
OF LIST

HAI

SNO

SET SEB
TO BE
ERASED-

CALL
ERASE

ERROR YES RROR
COND. 0 CONTRO

RETURN

Figure la. DBPAC Entry

ERASE

ERROR ERROR
COND. CONTRO

NO

RETURN

Figure lb. DBPACP Entry

DBGLIK

SET
INTERNAL

KEY
SWITCH

DBGLKI

SET USER
FIELD
NULL

IS
USE PNT YES RETURN

NUL

CALL
GET KEY

ERR ntries (PagEROR
COND. CONTRO

Figure ic. DBGLIK and DBGLKI Entries (Page 1 of 2)

U NO
CONVER

ES

INTE YES
NAL SWIT-

CALL
CONVERSIVD
ROUTINE

MOVE KEY
TO
USER

FIELD

ENG>T YES ERROR
ERROR Ctis a ONTRO

RETURN

Figure 1c. DBGLIK and DBGLKI Entries (Page 2 of 2)

DBGLKO

IS
U RL YES RETURN

.___RRLI
UL

CALL
CLOSE

ERRO YES ERO
COND EnNTROL

RETURN

Figure ld. DBGLKO Entry

Ioq

DBGLKS

ERROR
YES CONTRO

NO

YES ERROR
CONTRO

NO

GET
CURRENT
SUBSCRIPT

CALL
GET KEY BY
SUBSCRIPT

ERROR YES ERROR
COND. ONTROL

AFigure le. DBGLKS Entry (Page of 2)

Figure le. DBGLKS Entry (Page I of 2)

A

S
USER- -YES CALL
PNTR 2 OPEN

NULL

NO

ERROR NO IEYESLD ERROR

CONTRO AMES CONTROL
EQUAL COND.

YES N

CALL
PUT
KEY

ERROR YES . ERROR
COND. CONTROL

RETURN

Figure le. DBGLKS Eintry (Page 2 of 2)

DUPLIST

IS YES
USER RETUR
PNTR NULLNULL

NO

CALL
OPEN

(NEW)

ERROR YES ERROR
COND. CONTRO

NO

CALL
CLOSE

(OLD)

ERROR YES ERROR
COND CCONTROL

Figure If. DUPLIST Entry (Page 1 of 2)

CALL
GET KEY

ERROR EOF? YE FINISH
COND. -LIST

NO NO

CALL ERROR
PUT KEY CONTROL

E ERROR
NO ERROR YES CONTRO

FOND.

Figure lf. DUPLIST Entry (Page 2 of 2)

LIST

VALID NO ERROR
OPERATO CONTROL

A

ES

USER YES IS SET POINTEYESi EQUAL TO
PNTR 1 OPERATOR EQUAL TO

NULL "1"OK USER-PNTR

NO

SET POINTER
EQUAL TO RETURN

USER-PNTR 1

NO

USER YES S
PNTR 2 OPERATO A

NULL "E'AN

NO

AE NO ERROR
FINAME CONTRO

ES

Figure 1g. LIST Entry (Page 1 of 4)

ARE ERROR
SETS CO CONTRO

PAT

CALL OPEN
SET WRITE

ERROR YES
CONTRO

NO

CALL GET

(SET 1)

CALL GET

(SET 2)

3a

Figure 1g. LIST Entry (Page 2 of 4)

S4a \

EOF NO EOF NO 3a
ON SET 1 N SET 2

YES YES

YES

(FINISH

LIST

Figure 1g, LIST Entry (Page 3 of 4)

3b 3a

i's COMPA- IS
YES OPERATOR E SET 1 PlATO

E! (Not

3c

IS IS CALL SETCALL SET PERATO CALL SET
WRITE (Set 1' WRITE(Set

1, Key n) (or KEY n)

ES

ERROR YES ERROR CALL SET ERROR ES ERROR
CONTRO COND. WRITE(Set2 CO RO

COND.n) COND. / 0NTR)Key n)

NO
ERRORYES
CONTRO

CALL GET CALL GETERROR
(Set 1) COND (SET 1)COND.

NO

CALL GET CALL GET

4a (SET 2) (SET 2)

4a 4 a

H LIST

SET PNTR ERROR
VALI ONTROL

GET TOTAL

NUMBER

OF KEYS

RETURN

(COUNT)

Figure lh. #LIST Entry

DBPLIK)

USER- ERROR
NTR
NCL ONTRO

NO

WRITE

ERROR YES ERROR
COND, ONTROL

RETURN

Figure li. DBPLIK Entry

DBSLLL

IS
SER-PNT YES RETUR
NULL NULL

IS YES ERRORSIZE
ONTROL

0

CALL

OPEN

ERROR ERROR
COND. CONTRO

RETURN

Figure lu. DBSLLL Entry

DBFREET

POINT TO
FIRST LIST
IN CHAIN

Y
PTR.NULL

ARKED N CALL

GET NEXT
LIST IN
CHAIN

Figure lk. DBFREET Entry

ULIST

CALL GET
FOR FIRST

KEY ANY
UPLICA

ND9

PUT KEY
TO NEW
LIST

LIST ERASE

T NULL CREATED
LIST

CALL GET
FOR NEXT

KEY RETURN
ERASE INPUT LIST
CREATED AS NEW LIS

SCB NULL

PTR

RETURRETURN

NEX
KEY LAST C

KEY

Figure 11. ULIST Entry

GET

CALL GET
BY

SUBSCRIPT

ERROR YES EOF? REut
COND.

NO NO

INCREMENT
CURSOR ERROR

CONTRO

RETURN

Figure Im. GET Internal Routine

CERROR
CONTROL

SYSFigure YES IGNAL
ERROR ERROR

NO

USER
ERROR
OUTIN

Figure In. ERROR CONTROL Internal Routine

FINISH
LIST

IS NO RETURN

ERROR YES ERROR
COND. CONTRO

RETURN
OINTE

Figure lo. FINISH LIST Internal Routine

PAGE 444-

TOPIC B.6 - DATA BASE EXECUTIVE PARENT - CHILEFEN FUNCTIONS

A. MODULE NAME

Data Base Executive Parent and Children List Functions.
Program-ID : NCCLIST
Module-ID : CCLIST
Entry points - UPLIST,CPIIST

B. ANALYST

William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

CCLIST builds a list of children (or parent) keys from
a list of parent (or children) keys. Since data base
input is needed to build these lists, this program
could have been a part of DBPAC. However, (1) DBPAC is
already large, (2) these functions are logically
"above" those in DBPAC, in fact they use DBPAC and (3)
these functions are infrequently used, i.e. only for
certain SELECT operations when subfiles are involved.
Consequently this is a separate module.

Mainline PL/I programs use the CCLIST services by
function reference in a PL/I expression.

D. DATA REQUIREMENTS

See the DEPL/I Language Extension User's Guide,
Section 8. Topic B.2.

E. PROCESSING REQUIREMENTS

1. Top Level Flovchart

Not Applicable

2, Narrative

The routines all receive a MPCB (Mainline File
Control Block) as their first parameter. They
utilize entry points in the DELIST or DBOSET
modules to perform list or set operations.
CCLIST's second parameter, a subfile control field
name, is posted in MFCB.ONFIELD for DBPAC. The
routines all receive a list pointer parameter. If
it has the NULL value, they return a NULL list
pointer immediately.

PAGE 5 /1,4

Then READ FILE LIST KEY (0); is done to reset the
READ cursor of the input list and the list's key
field name is compared with the anchor key field
name in the core descriptor tables. For CCLIST
they should be equal (the input list should be an
anchor key list); if unequal, the input list
pointer is returned immediately. For CPLIST and
UPLIST they should differ (the input list should
be a subfile key list); if equal, the input list
pointer is returned immediately.

The #LIST function is invoked on the input list to
obtain the count to govern further processing.

For the CCLIST function READ FILE LIST NOLOCK is
done iteratively to process all (parent) records
in the input set. From each one a GET FILE
SUBFILE LIST SET is done using the second
parameter for the subfile name. This returns a
list pointer to a temporary set consisting of the
subfile control field. If it is null, control
loops back to the next PEAD and GET. If it is the
first non-null control field encountered, it is
made the basis for the output list. If it is a
subsequent non-null control field it must be
merged with the previous output. Control last
seqment. Otherwise (rarely) the OR LIST function
of the RDBLIST module must be invoked to loops
back until all the PEAt and GET's have been
processed. The output list pointer is returned.

For the UPLIST and CPIIST functions a switch is
set indicating whether duplicate keys are to be
dropped after the parent list has been built by
code common to both entry points. READ FILE LIST
NOLOCK is done itermatively to process all
subrecords in the input set. From each one the
internal parent key value is extracted and posted
to the output list.

If the output list has only one key, its pointer
is returned for either UPLIST or CPLIST.
Otherwise the output list is assumed to be in an
ascending collating sequence. For the CPLIST
function the output list pointer is returned at
this point.

For the UPLIST function tIe previous key added to
the output list is saved. New keys are compared
to the saved key; if it is unequal to it, the new
key is added to the output list and becomes the
next saved key. The output list pointer is
returned.

PAGE 4-e6-/7

F CODING SPECIFICATIONS

1. Source Language

PL/I

The SCB and LISTERR declarations are included from
the SCURCE.LISRMAC dataset. Declarations for
MFCB, DESC, DESC FLD and FCB structures have been
taken from the source for tEPAC.

No assembler routines are used.

2. Suggestions and Techniques

Not Applicable

PAGE 40-7

TOFIC B.7 - EXECUTIVE ASSEMBLIZ ROUTINES

A. MODULE NARE

Program-ID: NDBRTNS
module-ID: DBRTNS

B. ANALYST

Connie D. Becker
Neoterics, Inc.

C. MODULE FUNCTION

This program is divided into many routines and
entry points each with a unique function. Refer
to the individual entry pcint prccessing requirements
in section E.

D. DATA REQUIREMENTS

Not Applicable

E. PEOCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 1.

2. Narrative

a. RETRIPT Entry

This routine is used by the Data Base
Executive error routine. It posts the
double word in the MFCB so that the
user (of DBPAC) can return to the next
sequential instruction in his program
after the instruction in his program
after the occurrence of an error. The
first word is the invocation count; the
second word is the a~dress,

b. ASMMODE Entry

This routine is used to determine if the
maintenance task is running in a batch mode.
It returns a 'C' if running conversationally; or
it returns a 'B' if not. The current
implementation always returns a 'C'.

c. DBUCHEK Entry

PAGE ?A /,

This routine is used to validate the
construction of an external name. The
rules used are:

1. the name must begin with an alphabetic
character (including #, $, a),

2. the name must be eight characters or
less,

3. the second and subsequent characters of
the name must be alphanumeric (including
#, $, 8, ?).

The parameters passed are the name and the
name length (in the event that the user
wishes to restrict it to less than eight).
If the name is invalid, the length
parameter will be set to one, as an error
indicator, otherwise it will be set to
zero.

d. MTT Interface Entries

ASMXTR, ASNPASS, ASMMUST: These entry
points simply transfer control to the MTT
monitor to maintain linkage conventions.

e. ASMID Entry

This entry is called to provide the system
with the current installation ID. Current
implementation returns an ID of 'NASIS***'
to all calling prograns.

F. CODING SPECIFICATIONS

1. Source Language

DBRTNS is written in IBM 360/OS Assembler Language

2. Suggestions and Techniques

Special attention is paid to the linkage conventions
of the current PL/I compiler.

1.o

ASMMUST \ DBUCHEK RETRNPT

CALL GET POST MFCB
PARAMETERS WITH ADD-
FROM LIST RESS,INVO-

CATION CNT.

RETURN VALIDATE
LENGTH OF RETURN

NAME

ASMXTR ALT ASMMODE
VALIDATE
FORMAT OF

NAME

CALL - 'RETURN A
MTTXTR 'C'

TO CALLER

SET RETURN
CODE

RETURNN

RETURN

ASMPASS

CALL
MTTPASS

RETURN T

Figure 1, TOP LEVEL FLOWCHART

PAGE 449

TOFIC B.8 - SET MANAGEMENT

A. MODULE NAME

Program-ID: NDBOSET
Module-ID: DCOSET

B. ANALYST

0. K. Hearne
G. F. Oswald
Neoterics, Inc.

C. MODULE FUNCTION

NDBOSET will provide the CS system with the means of
storing and retrievinq SET's, These SET's will be
maintained as a single data set for all users. The
module vill provide the capability of dynamically
allocating and deallocating both external storage
areas and internal buffers. The life span of a SET
is currently the duration of a session or from
LOGON to LOGOFF (which ever is shorter).

D. DATA REQUIREMENTS

1. 1/O Block Diagram

See Figure 1.

2. Input Data Sets

a. Parameter Cards

Using the normal OS procedure for passing
parameters in the EXEC card, the following
information will be available at load time:

1. Number of reccrds in an allocation qroup,

2. Allocation algorithm variables (proposed).

3. Number of set I/O buffers to be allocated.

b. Punched Card Input Files

None

c. Input Files (Propcsed)

The standard NASIS index files may, at
times, be input to the routine when such a

PAGE 4-

file has been designated as a set. Keys may
be retrieved via normal facilities.

4. On-Line Terminal Intries

None

3. Output Data Sets

a. Output Files

The NEOSET module is primarily concerned
with a single large BDAM data set. All
sets of keys are allocated as subfiles;
example, SET number is sutfile name within
the primary data set. Records are accessed
using relative record numbers. Bit tables
are used to indicate which records are
allocated to a particular set. The bit
tables allow fast deallocation of records
comprising a set.

The primary BDAM file is defined using
standard JCL cards. Record size, file
size and palcement cam be specified for
maximum optimization for an installation.
The parameterized information will be used
to preformat the allotted storage areas
and control the construction of the SET
manager's system tables. The above
preliminaries will be a function of the
system load routine, thereby reducing the
SET manager's resident housekeeping
requirements.

b. File Attributes

1. Organization - EDAM

2. Recording Medium - DASD

3. Name - SETPLEX

c. Record Attributes

1. Key Identifier - None

2. Length - As Specified in JCL

3. Mode - FIXED

4. Blockinq Factor - 1

PAGE 4-

d. Field Attributes

1. Length - Same as Key Length

2. Mode - Fixed at Key Length

3. Data Type - Alphanumeric

4. Position - As many fields (keys) as will
fit in record.

e. Other Identifying Information

The BDAM logical record size and block size
must be equal. NEBOS2T itself provides for
blocking and deblccking of the keys into
the BDAM record.

4. Reference Tables

The SET manager's system tables are installation
variables and, therefore, the construction and
initialization of the system tables will be a
function of the system loader. These tables
are likewise expected to be protected from
extraneous manipulations.

a. Master Bit Table (MABTAB) Global System Table

This table will be comprised of four parts.
They are as follows:

1. Master Table Header Flock

The header will contain static information
defining the characteristics for the SET
data set (SETPtEX).

2. Master Segment Control Block

This section of the table requires one
entry for each segment (device) allotted
to the SET data set. It will contain both
static and variable information.

3, Master Bit Table Block

This part of the table will be formated so
as each group (of records) contained
in the SET data set has a corresponding
bit in the table whose integrity is
maintained by the SET Manager's allocate
and deallocate functions.

PAGE 4+2/5

4. The Section Lock Table

This table is the same size as the Master
Bit Table. It contains a one byte entry
for each section (8 bits equal 1 section).
The table is used by the SET Manager to
lock a particular section of the Master
Bit Table. In this manner the SET
manager is able to maintain the integrity
of a given section during task allocation.

There are several reasons for this type of
control on the SET data set. They are as
follows:

1. The use of allocation by group allows the
record size tc ce independent of the
amount of storage taken in each allocation.

2. Faster allocation of records since a
current status of all records available
in the SET data set is possible by a
simple interrcgaticn of the bit table.

3. Deallocation of a SET (ERASE) requires
resetting of all bits associated with the
SET, No record manipulation is necessary.

4. Core storage is minimized since each bit
position represents a unit of records
(group),

b. Master Bit Table Flock Caracteristics

There are three levels of the Master Bit Table
Block.

1. Segment. A segment is defined as a
predetermined area residing on a
physical device which has been mapped
according to the system's specifications
as part of the SET data set, There are as
many segments as there are physical
devices assigned to the SET data set.

2. Section. A section is an internal unit of
organization within a given segment. The
number of sections within a segment is a
function of the record size and the number
of records per group as defined for a
system. The section is represented by
eight bits (byte) in the Master Bit

PAGE +13-

Table Block. The use of byte is for
programmatical ease.

3. Group. A group is the smallest entity
represented in the Master Bit Table.
Each bit represents a group of records.
The number of records per group is
parameterized and, thus, allows for
individual system optimization.

c. Buffer Pool

The buffer pool will be a predetermined size
depending upon record size of the installation.
This will be built at system initialization
time and contain as many buffers as the system
will allow. The format of pool allows a task
to step through the buffers to find one which
is not allocated. The buffer will be marked as
locked and the current available buffer count
will be decremented.

d. Section Lock Table

The Section Lock Table is comprised of a one
byte entry for every section within the SET
data set.

Allocation of a group(s) is attempted within one
section. If that section cannot accommodate the
number of groups requested, the next section
within a segment is tested. Once a section
satisfies the allocation requirement, it
must be marked so that a manipulation of the
group bits can occur. The Section Lock Table
will reflect those sections currently being
manipulated by the allocator and, thus, negate
the possibility of multiple allocations of a
single group.

FF indicates this section is currently being
manipulated by the allocator.

e. User Set Table (USETAB) Local Task Table
(One Per Set)

The User Set Table will be comprised of two
parts. They are as follows:

1. Set Control Block

The Set Control Block will contain the
current information regarding a user's SET.

2. User Bit Table Block

The bit table will retain the allocation
characteristics of an individual SET.
Each UBTB will reflect the section number
and eight allccation bits within that
section.

. PBOCESSING REQUIREMENTS

1. Top Level Flowcharts

See Figures 2.1, ff.

a, READ/WFITE LOGIC

All read operations require a logical record #
a buffer and a key position within the buffer.
Each entry point will be responsible for setting
a current key subscript in the appropriate SCB.
In this manner a common routine can be utilized
to decide whether the key requested resides
within the realm cf the current group; ie, 1
group covers X records and Y keys four records.

1. The write routine will set the
subscript to the previous subscript + 1

2. Sequential read forward will set the
subscript to the previous subscript +1

3. Sequential read backward will set the
subscript to the previous subscript +1

4. Subscripted read will set the subscript
equal to the one requested.

Division of the subscript by the number of keys
per record equals the relative record number
and the key position within the record if the
relative record number is equal to the previous
record number, the requested key location
is within the current record. Division of the
relative record number by the number of records
per group will develop a remainder equal
to the relative pcsition of the logical record
number within a group.

Example:

Number records per group = 4
Number keys per record 20

PAGE -1-5-31

Previous subscript = 107
Previous logical record #-1 = 10
Previous relative record &

key position 5, 7
File layout

Log Rec 1: Rec 0, keys 0-19
Rec 1, keys 20-39
Rec 2, keys 40-59
Rec 3, keys 60-79

Log Rec 9: Rec 4, keys 80-99
Rec 5, keys 100-119
Rec 6, keys 120-139
Rec 7, keys 140-159

Two groups have been allocated to this file.
They control logical record numbers 1 thru 4,
and 9 thru 12.

b. NDBOSET will provide the following internal
routines which will be invoked by external
calls.

1. Set Write

2. Set Read

3. Open Set Write (Currently Implied Entry)

4. Open Set Read (Currently Implied Entry)

5. Close (Currently Implied Entry)

6. Erase Set (Currently Implied Entry)

These routines will comprise the normal
processing path within the module.

Each of the above routines will require an
internal call to the various managers within
the mcdule. The following are the manager
entry points:

1. Master Bit Table Manager

a. Allocation

b. Deallocation

2. Set Control

3. User Bit Table Manager

PAGE 1 f

4. Core Request/Belease Manaqer

5. Read/Write Key Manager

6. Buffer Manager

7. Error Control Manager

8. Subscript Function

9. Resequence Function

10. OR Function

Before the system (session) is operational,
there are two phases of initialization which
must be accomplished:

1. Preformatting of SET data set records.

2. Table allocation and initialization.

Step one of the above may be an off-line program
unless reorganization of SET data set is
required at system load time.

Step two is required every time the system is
initialized. Step two is a parameterized
housekeeping function which need only be
called once during a session. It is, therefore,
a completion of its function. See system
load Primary initialization of SET data set.

c. Routines Invoked by External Calls:

There are two basic entry points to the
module. They are: SET WRITE and SET READ.
These external requests will require the
remaining functions of the SET Manaqer.
However, further analysis of the system has
shown a desirability to provide additional
external requests in order to efficiently
maintain system and core resources, Therefore,
an additional four functions will provide for
external calls. They are as follows:

1. SET WRITE

The functions are:

a. Verify existence of the SET number.

b. Verify SET is in write mode.

PAGE 44/

c. Non-existent SET implies OPEN of new
SET,

d. WRITE key to SET.

2. SET READ

a., Verify existence of the SET number,

b. Verify SET is in read mode.

c. Existing SET in vrite mode implies CLOSE
and OPEN of SET.

d. Read key from SET.

3. OPEN SET WRITE

a. Call SET control to create new SET,

4. OPEN SET READ

a. Verify existence of SET.

b. Verify SET closed.

c. SET OPENed for WRITE, must be closed
to force out last record and reOPEN.

d. Deallocate unused groups.

5. CLOSE

a. Verify existence of SET.

b, CLOSE SET

1. In WRITE mode, must force write.

2. CLOSE READ SET.

c. Call SET control for updating SET
Control Tatle.

4. Call Buffer Manager for release of I/O
Buffers.

6. ERASE SET

a. Verify existence of SET.

b. Call SET control for updating SET
Control Table.

PAGE 4if-1/1O

c. Call Buffer Manager for release of
I/O Buffers,

d. Call Deallocation for release of
allocated groups.

e. Call SET control for release of SET
Control Table.

. Functions Invoked by Internal Calls:

The purpose of these functions is to maintain
the integrity of the user SETs. Whenever
possible, these functions will perform as part
of the user task.

1. Master Bit Table Manager (GETRCD)

a. Allocation

1, Determine segments for attempted
allocation.

2. Find section within segment to
accommodate allocation.

3. Lock section during bit manipulation
(allocation).

4, Call User Bit Table Manager.

b. Deallocation (ERASE)

1. Call SET Control for updating of
SET Control Table,

2. Obtain each entry within User Bit
Table Block.

3. Mark correspondina section/group
bits as unallccated.

4. Call Core Manager
to release User Bit Table entries
and Set Contrcl Block.

2. Set Control

a. Call Core Request/Release Manager for
create/destroy of SET Control Table.

b. Update SET Control Table variables.

PAGE A

3. User Bit Table Manager

a, Insert newly allocated section in User
Bit Table.

b. Determine if another entry is possible.

1. Call Core Request/Release Manager.

2. Initialize new User Bit Table,

3. Link User Bit Table entry.

4. Core Request/Release Manager

a. Parameterized request of memory.

b. Parameterized release of memory.

c. Indication of insufficient memory
requires the task to wait.

5. Read/Write Key Manager

a. Write

1. Insert Key in current buffer.

2. Write buffer, if full.

3. Call Puffer Manager.

4., Wait User Task.

b. Read

1, Obtain Key from current buffer, if
possible.

2. Call Buffer Manager, if no buffer.

3. Initiate Read.

4. Wait User Task.

6. Buffer Manager

a. Obtain or relinquish buffer from buffer
pool.

b. Call Core Manager.

PAGE 2Q4-/4L

1. If no buffers available.

2. If buffer returned causes previously
requested memory to be free.

7. Error Control Manager

a. Facilitate debugging aids.

b. Traps system errors.

8. Subscript Function

The Subscript function will allow a user to
request a key from an existing SET by
subscript. The user has three (3) options
for accessing a record by subscript.

a. Positive Subscript - Direct displacement
to key from relative key zero,

b. Zero Subscript - Resets current key
pointer to beginning of SET,

c. Negative Subscript - Sets current key
position to last key in SET or to
current key position - 1.

9. Resequence Function

As each write key request is processed, the
write manager will test for a possible key
out of sequence. This is possible
within children/parent list operations.

The resequence function will first attempt
to resequence the keys within the current
user buffer. If it is determined that the
out-of-sequence key must affect a previously
written record, a OR set will be opened and
a key that fits this criteria will be kept
in sequence in the OR set.

The 'OR' set can fill a buffer; if this
happens, the user set will be pseudo closed
and the OR set and the OR function of the
set manager will be involved.

10. OF Function

The OR function will be used to generate
a new set by ORing the user's set with the
reseguence 'OR' set. An entry will be made

PAGE 4 /

into the LIST functions which facilitate
this requirement. Upon completion of the
new combined set, the SET Manager will
perform the following operations:

a. Deallocate user's set.

b. Overlay user's SCE with the nev combined
set's SCB.

c. Release new combined set's SCB,

d. Release OR'C set's SCB. (No
deallocation necessary; 'OR' set
maintained as single internal buffer.)

Control will return to the Write Manager for
'write key completion' processing.

e. Reguirements outside of NVBOSET:

1. Before System Load

a. Primary BtAM file initialization,
preformatting and description.

2. System Initialization

a. Build tables.

b, Get number of records/group.

c. Open EDAM data set.

3. Monitor

a. WAIT with single ECB address.

4, I/O Manager

a. Write EDAM record using relative record
number.

b. Read EDAM record using relative record
number.

5. System Shutdown

a. Close BDAF data set.

6. Logoff Processor and User Abend

a, Call to NEEOSET to flush and erase

PAGE 9*2-/4

user's sets.

7. NASIS Director

On return from command processing modules,
a call to NtBOSET is necessary to release
buffers still allocated and other clean-up.

8. Command Modules

CLCSE or FREE LIST can be used to close a
set and dealiccate buffer.

9. DEPAC

a. Provision to allow GET INDEX ELEMENT
forward, backward and by subscript,

b. Separate READ and GET pointers which
are not maintained by the SET Manager.
DBPAC must use read by subscript to
maintain position,

f. I/O Manager Linkage:

Entry Point: SETIO

R1 - Points to parameter list in core,

1. Parameters

a. DECB address (?W)

b. Relative record number (FW)

2. DECB Contains:

a. Buffer Address

b. Read or Write Flag

F. CODING SPECIFICATIONS

1. Source Language

Assembly Language is used for efficiency.

2. Suggestions and Techniques

a. Needs on Set Manager

1. A request to set the GET cursor (current
key pointer) to the teginning of the

PAGE

SIT. (This call could be a pseudo OPEN
READ.)

2.- Subscripted read from a set.

3. Design macros for call to Set Manager.

4. OPEN Processing

a. If OPEN SIT READ is implemented, then
OPEN could return an error indicator
for involved OPEN, for CPEN of NULL
file, and for SET OPENed successfully.

b. A return cf a null entry when a SET
exists but no keys are present in the
SET.

5. Set Manager must retain field name and
conversion routine name.

6, Set Manaqer must check sequence of keys on
all WRITE's. When a sequence error is
detected, a second list must be made
available in crder tc retain the keys to
be inserted. Whenever necessary, the two

7. One section may cross a segment boundary.

8. Conditional GITMAIN within NASIS.

9. Address of user's USITAB chain in user's
master table.

10. Clean-up exit in LOGOFF processor.

11. Relinquish control macro.

12. Set closing function SCLOSE.

13. All sets are closed by return to director.

GET
PUT SETEGL

SET tSET!
DATA EG2
SET

NDBOSET SEG n.

SEGMENT TABLE

SECTION LOCK TABLE

MASTER BIT TABLE

SET CNTRL USER BIT UBT UBT
BTOCK TABLE EXTENSIOn EXTENSION n

BUFFER POOL

BUFFER 1 2 3

Figure 1. I/O BLOCK DIAGRAM

MNXTAL
ADDRESS OF NEXT SEGMENT TO BEGIN ALLOCATION
MBGNMBT
BEGINNING ADDRESS OF MBT

8 MENDMBT
ENDING ADDRESS OF MBT

12 MISECLCK
ADDRESS OF THE SECTION LOCK TABLE
MCURBUF

16
ADDRESS OF THE CURRENT BUFFER IN THE POOL

20 MFRTBUF
iADDRESS OF THE FIRST BUFFER TO POOL

24 MNUMBUF MNUMSEG
NUMBER INTERNAL BUFFERS NUMBER OF SEGMENTS

28 MREGRP MBUFSIZ
RECRODS PER GROUP BUFFER SIZE

32 MRECSIZ
RECORD SIZE

36

40

44

48

52

56

60

64

68

72

76

80

84

Table 1. MASTAB

S 1 BYTE PER SECTION EACH BIT EQUAL 1 GROUP

4

8

12

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

Table 2. MASTER BIT TABLE

MSTB

0 MSALOC MSSECNO

MSSEGAD
4 ADDRESS OF NEXT SEGMENT TABLE ENTRY

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

Table 3. Master Segment Table

0 1 BYTE PER SECTION 'FF' INDICATES

4 ALLOCATION IN PROCESS

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

Table 4. Master Section Lock Table

BUFLOCK
0 _BUFNEXT ADDR OF NEXT BUFFER

BUFFER

BUFFER EQUAL RECORD SIZE (FULL WORDS)

8

12

-16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

Table 5. BUFPOOL

SNXTSCB
0 ADDRESS OF NEXT SCB

SUBTDIS/SCURUBT
UBT DISPLACEMENT/ADDR OF CURRENT UBT
SCURBUF
ADDR OF CURRENT. BUFFER
SCURKEY

12
ADDR OF CURRENT KEY

16 SFLD NAME

20

24 SCON RTN

28

32 SBGNREC SENDREC
BGN LOGICAL REC NUMBER ENDING LOGICAL REC #

36 SCURREC SNUMREC
CUR LOGICAL REC NUMBER NUMBER RECS WRITTEN

40 SKEVREC SKYLSTR
NUMBER KEYS PER REC NUMBER KEYS LAST REC44 SKEYLNT SCNTRL
KEY LENGTH CONTROL BYTE48 SNUMGRP SRECCUR
NUMBER GRPS PER ALLOC GET-RECORD CURSOR

52 SUBSCRPT

56 SCBDECB

60

64

68

72

76

80

84

Table 6. SCB

SPRVUBT

SNXTUBT
ADDRESS OF NEXT UBT EXTENSION

8 SECTION NUMBER CONUBTAML Y
CONTROL BYTE12LOC MASK

16

20 BCBPRKEY
255

24

28

32

36

40

44

48

52

56

60

64 6----------

68

72

76

80

84

Table 7. UBT

BT POSITION CONTENTS

0-1 Contains section number from which group(s)
(Byte 3) were obtained.

2 0 Not Used
Initialized to zero when UBTE created
NUMBER OF GROUPS Allocated by this entry.
Initialized to 1 when UBTE created
CURRENT GROUP (Bit Position)

0-3 Being filled (write) or ACCESSED (READ).

3 CONTAINS GROUP(s) ALLOCATED WITHIN THIS
SECTION.

TABLE 8. USER BIT TABLE ENTRY

SSEC 1 SEC 2 SEC n SEC 1 SEC 2 SEC n

SEG 1 USER BIT TABLE BLOCK

[SEC 1 SEC 1
.L

Group
REC 1 SEGMENT 1

SECTION 1

....GROUP 1 -- 8 groupt/sections

SEG 2 4 RECORD 1 -- system variable

KEY 1 -- set variable

REC n.

SEG n.

TABLE 10. FILE RELATION SHIPS

I N ITIALIZE

GET PHYSICAL
ECORD SIZE

DETERMINE
HIGHEST
RECQRD #

'DETERMINE
iFIRST RECD
ON EACH

WRITE THESE
PARMS INTOi
SPECIAL
FILE TO BE READ AT SYSTEM LOAD

PREFORMAT
USING
BSAM

END

Figure 2.1 FILE INITIALIZATION
(Must be done before system load)

(ALLOCATION

GET ADDR OF
BGN. OF MB.

GET ADDR.
OF NEXT SEG
TO ALLOC.

INDEX MBT
BY SEC. NO.

GET ADDR.
OF TRT TBL.
FOR GRID1,
2 4 ,

NoS e. End of RESET ADDR
WAIT TRT TO BGN OF

IAvai for Function MAT
Allo:.

HIT

SET
SEC.NO

CCKE

ALLOC. BITS
IN 4 BT RSET
SEC.NO.LOCK
BYTE.

SET UBT.
SEC.NO.
ALLOC.BYTE i

ET NEW SEG
IADDR IN MHTJ

Figure 2.2 RETURN

ALLOCATE
SCG

INITIALIZE
UBTB PTR
KEY LENGTH

SET BITS
IN CONTROL
BYTE OF

SCB

DETERMINE
OF GROUP
PER ALLOC.
FOR THIS

RETURN

START

LIST ERROR
PTR-NULL? ONTROL

NO

IS
SET CLO- NO CLOSE

S'ED SET

SET CURRENT
RED#EQUAL
TO FIRST

RED#

POSITION KE
PTR TO 0

RETURN

Figure 2.4 OPEN READ (Internal)

la

(0)

GET
SUBSCRIPT

KEYS PER
RECORD

PREV S.ET CUR
KEY CURSORI RETURN

GET PREV
REL RECORD
UMBER

- ~STORE NEW

NOTE EL-REC # &
The remainder in- Remainde DIVIDE BYCURSOR
dicates the record RECORD PERBY

position within the PER

current group

This develops a neg- SUBTRACT
ative or positive PREV.REL-
displacement from REC # FROM
the previous record. CUR REL-RECI

If this exceeds the limits ADD TO
of a group (Oton where N REMAINDER
is the number of record JOF CUR REL
per group-1) Then a new IREC(DIVISIO)
group must be found

2 b
(0) Figure 2.5

2b
(0)

2b RESULT Y S SURPT

(2)SET CURT ZER NS

RTN

YES

ADDADD NEGATIVE OR POS-

FROM PREVIOUS RNO YES SUB- NEC.I_ _SCRIPT GRP I;TN

ITS CALL

SET CUR GETBU

CURSOR

YES

NOTE

ADD NEGATIVE OR POS-
ITIVE DISPLACEMENT
FROM PREVIOUS REC.

THI
A RITE NO CALL

READ

YES

RETURN WAIT

Figure 2.6

(O)C

GET DISPL.
INTO CUR
UBT EXT.

GET ADDR
OF CUR UBT
ENTRY

GET POINTER
TO THE CUR
GROUP

(1) _

GET GRP
MASK

SHIFT TO
NEXT GROUP

N GET
OF SEC-THIS YES NXT.

~j\ IN - READ (SE) 4
(0)

INO NO
DEVELOP
LOG REC# ALLOC
(Sec.No 8

IGRP N)

Figure 2.7 NEXT GROUP ROUTINEb

Figure 2.7 NEXT GROUP ROUTINE

4d

GET DISPL
INTO CUR
UBT EXT

iS GET ADDR OF
IT AT M~ NEXT UBT

EXT.

O

INCR DISPL SET DISPL.
TO NEXT UBTI FIRST U
ENTRY NTRY

GET ADDR
OF NEXT
UBT ENTRY

SET GRP
POINTER TO
1

3c

(1)

Figure 2.8 GIFT NEXT SECTION

GET NEW
REL REC #

SET DISPL.
TO FIRST
UBT (1)

Se

(1) GET ADDR.

OF UBT
ENTRY

GET UBT
CONTROL
BYTE

CLEAR EXTR
RBITS

ULT
IBY NUM
ECs/GRP

iSUBTRACT
IFROM REL
IREC #

Figure 2.9

COUNT YES IRESET
EGATIVE COUNTER 7 g

INCR.DISPL.
TO NEXT UBT
ENTRY

NO___ 5e

(1)

SET DISPL
TO FIRST
NBT ENTRY

SET CUR.
UBT ADDR
TO NEXT
EXIT.

S5 e

Figure 2.10

7 g
(0)

SET GRP.
POINTER TO

GET GRP.
MASK DONE YES

NO

Is SHIFT MASK
GRP.ALLO NO TO NEXT GRP

INCR GRP
SPOINTER

YES

SUBTRACT
NUM REC
FROM REL-
REC #I

COUNT YES

RESET
COUNT

IDEVELOP
iLOG REC #
!SEC NOX8+
IGRPXN

2b
Figure 2.11 (2) /f

START)

NO RETUR
OPEN?

ES

READ READ
OR WRIT

WRITE

WRITE WRITE CALL
URRENT YES

NB UFFER? LAST -*4 FREEBUFBUFFER I
NO

SET CONTRO
BYTE .MARK
AS READ
ONLY

RETURN

Figure 2.12 CLOSE (Internal)

START

CALL
FREEBU F

GROUPS M
NABTAB
L SING -UlT.Bj

IUBTB
EXTENSIONS

SCB

RETURN (EXTERNAL)

Figure 2.13 ERASE (EXTERNAL)

START

UFFER YES
ALLOC? RETURN

0

TEST
LOCK FIND
BUFFER REE BUF-. -- NWAIT

ER? iBUFFER

YES

ASSIGN
BUFFER

THER NARIK BUFFER
ANOTHER
UFFE R-K? BUFFER ECB

INCOMPLETE

ARK BUFFER

ECBAS
OMPLETED

SRETURN

Figure 2.14 GETBUF (Internal)

START

UFFE NO RETURN

IYES

UNLOCK
:BUFFER QUEVE
ENTRY

1,i

POST BUFFER
WAIT ECB
COMPLETED

RETURN

Figure 2.15 FRFTPUT (Internal)

START

READ MASTE
SET FILE
PARM. FROM

ETCRTL

GET SET

PARM, FROM
"EXEC"!'

BUILD
MABTAB
STORE
ADDRESS

PEN BDAM
MASTER SET

SILE. O
ESET LAST
ADD.OF BUF
POOL IN

ET BUFFER MABTAB
OOL USING#
UF FROM

XEC CARD SET BEGI PUT BUF
ADDRESS OJ IN FREE
BUF POOL BUFFER

.INIT BUF LABTAB COUNT

ITR.& BUF
PARMS IN
MABTAB

ET SECTION SET BIT SET FREE------- OCK TABLE L-4TABLE TO BUF COUNT
S'X 'FF' 'BYTE X '00 'j

Figure 2.16 SYSTEM LOAD

PAGE 345-

TOEC B.9 - SET FILE I/O

A. MODULE NAME:

Program-ID - NDBSETIO
Module-ID - DESETIO

B. ANALYST

Tom C. Moser
Neoterics, Inc.

C. MODULE FUNCTION

This program is called by the NASIS Set Manager
DBOSET to access the set file. Passed in register
one vill be the address of the parameter list containing
a word for the address of the DECE, a word for the
address of a buffer, and a word containing the actual
relative record number to read/write.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1.

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

c. Input Files

The Set File is accessed by the program to
write or read a record of set items.

d. On-Line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The Set File is accessed by the program.

b. On-Line Terminal Displays

PAGE /73

Not Applicable

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

After initial housekeeping, this module checks
to see if the setfile is open. If not, it is
opened. After the open of the setfile, the DCB
is checked to see if the open completed
successfully. If not, an error code is set into
P15 and the module returns,

If upon entry to this module the DCE is already
open or after a successful open to the DCB, the
parm list passed is validated for proper data.
Depending on the bit settings in the DECB, a
read or write is performed to the setfile using
the parameters passed.

F. CODING SPECIFICATIONS

1. Source Language

The module is written in IBM Assembler language.

2. Suggestions and Techniques

Not Applicable

DBOSET

DBSETIO

SET
FILE

Figure 2, I/O Block Diagram

DBSETIO

SET- N OPEN
ILE OPE SET FILE

y OPEN
UCCESSF

VALID

SET
ERROR
CODE

EAD/
READ WRITE IWRITE

ISSUE READ ISSUE WRITE
TO SET FILE TO SET FILE
WITH PASSED WITH PASSE

RETURN

Figure 2. TOP LEVEL FLOWCHART

PAGE 427

TOPIC B.10 - FIELD UTILITIES

A. MODULE NAME:

Program-ID: NDBFLDU
Module-ID: DEFLDU

B. ANALYST

William Petrarca

C. MODULE FUNCTICN

NDBFLDU supports retrieval modules requiring various
field-related functions previously provided with the
FLDTAB table of NASIS/TSS Release 2. The four basic
functions are described in the fcllowing paragraphs,
each representing an entry point,

1. Field Classification - FLDCLAS

This function returns pertinent information about
a particular field. The field is classed as to
(1) invalid, (2) anchor-resident, (3) associate-
resident, (4) subfile-resident. Furthermore, the
subfile character of a sutfile or control field
is provided, along with a bit switch indicating an
indexed field.

2. Find control field name-FLDCTBI

This function returns the name of the control field
for a provided subfile character or subfile field.

3. Find key field name-FIDSKEY

This function provides the name of a key field for
either the anchor file or a subfile.

4, Get sequential-format field name-FLDGET

This function returns the next field name in
the predefined sequential formats 2 thru 5. The
calling routine provides the subscript field
number.

This function has an inverse capability of
providing a subscript field number for a given
field name.

All entry points will be called via PL/I
conventions.

PAGE 42-8-

D. DATA REQUIRENENTS:

1. I/O Block Diagram

Not Applicable.

2. Input Data Sets

Not Applicable

3. Output Data Sets

Not Applicable

4. Reference Tables

a. Mainline File Control Block

(MFCB) is setup by DBPAC and contains
database file status switches and pointers
to the descriptor table and the file control
block (FCB) for each file. NrBFLDU merely
references this block to return the proper
field information.

b. Descriptor Tables (DESC) are the internal file
descriptors; these tables contain information
concerning each field on each data base file.
DBPAC links 4escriptor tables' field
elements consecutively, similar to the fields
sequential order in the original FLDTAB with
a pointer named DISC.FLD.FCP which points
to the next DESC.FLD in the chain. NDBFLDU
utilizes this linkage for the FLDGET function.

c. Field table (OS version)-FLDTAB contains basic
information concerning the fields of a data
base. NDBFLDU references FLDTAE.FIELD.# to
verify the total number of fields on the data
base.

Please refer to the Data Set Specifications for
each of the individual tables for details.

E. PROCESSING BEQUIREMENTS

1. Top Level Flowchart

See Figure 1

2. Narrative

PAGE 42-17

a. FLDCLAS

This routine looks for a EESCFLD.FLDNAME in
the file descriptcrs identical to the
parameter field name. When it is found,
DESC.FLD, GROUP reveals the file of residence.
Super-fields have DESC.FLD.NAMECNT greater
than zero. The DISC.FLD.ASSOCFIL byte flags
associate file fields. The DESC.FLD.SUBCNTRL
byte is set on for control fields and, likewise
for inverted fields with the DESC.FLD.INVFIIE
byte. Consequently, the parameters are set
as follows:

parm 1: the MFCB
parm 2: 0 - invalid field

1 - anchcr field
2 - associate field
3 - sutfile field

parm 3: the field name.
parm 4: either a subfile field character

for subfile fields and control
fields or a blank for non-subfile
fields.

parm 5: a bit on for indexed fields.

b. FLDSKEY

This routine searches for the file descriptor
whose MFCB,FILE_NAME ends with the supplied
subfile character. Once found the file
descriptors contain the key field name in
DESC.FLD(1).FLDNAME. Consequently, the
parameters are set as follows:

parm 1: the MFCB
parm 2: 0 - unsuccessful call

1 - successful call
parm 3: the key field name
parm 4: the file suffix character

c. FLDCTRL

If a field name is given, this routine performs
an internal field classification to get the
field names subfile suffix; if a subfile suffix
is provided. this routine proceeds as normal.
The field descriptors for the anchor file are
searched until DESC.FLD.SUBCNTRL is on and
DESC.FLD.SUBFILE is the same as the subfile
suffix. Consequently, the parameters are
set as follows:

PAGE

parm 1: the MFCB
parm 2: 0 - unsuccessful call

1 - successful call
parm 3: the contrcl field name for the

subfile.
parm 4: the suffix of a subfile.

d. FLDGET

This routine performs two functions. By
providing a field subscript number to the
standard format 4 list of fieldnames, the caller
can obtain the particular field's name in any
order. Inversely, by providing a valid field
name, the caller can get the particular
field's subscript number in the format 4 list.

For the former furcticn this routine loops
down the DESC.FLD.FCP pointer chain the
number of fields specified in the given field
number; the final DESC.FtD.FLDNAME is returned.
For the latter function the same chain is
followed with a comparative check for the
given field name; having been found, the
subscript number is returned.

parm 1: the MFCB
parm 2: the field number
pare 3: the field name

F. CODING SPECIFICATIONS

1. Source Language

The NDBFLDU coding is to emplcy the IBM PL/I
programming language.

2. Suggestions and Techniques

NDBFLDU is not to alter any MFCB or related tables
to perform its functions so as to guard the
integrity of DBPAC.

FLDCLAS FLDCTRL %KFLDGET

LOCATE
FIELD SUBFIL Y SUB- N
DESC UFFIX IV

FOUND N U FOR GIVEN T
FIELD NAMEI D

SET PARMS. CHASE DOWFROM DESC
IDESC .FCDDATA

FCHAIN
FORDSUBSCRIPT

NO.OF PTS
G -

ETURN SEARCH FLD,
UDESC OF AN

I
SHOR FOR SUB GET FIELD

L--- CNTRL ON &I NAME FROM
FLDSKEY SUBFILE LK FINAL DESC

SUFFIX
GIVEN/FND

RETURNLOCATE
FILE NAME U

WITH SIUFTN OUND? Y

fCHASE DOWN
DESC.FCP

FOUND
CHAIN FOR

SET PARM. SET PARMS LDNMIKE GIVE
#2 TO ROM FIELD !NAME
ZERO ESC DATA

GET FIELD i
iNAME FROM
1ST DESC _

FOR FILE

LRETURN)
RETURN,

Figure 1. TOP LEVEL FLOWCHART E

PAGE

TOPIC B.11 - GENERAL CALL BY NANE

A. MODULE VANE:

Program-ID - NDECALL
Nodule-ID - DBCALL

B. ANALYST

Tom Moser, William Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

This module allows a PL/I module to call an
external entry point by specifying its name at
execution time. Any parameters other than the entry
point name will be passed on to the called entry
point. The name specified must conform to the
construction standards of OS/360.

D. DATA REQUIREMENTS

1. 1/0 Block Diagram

See Fiqure 1.

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The ESDTAB file is read in to build an
in-core table of entry-pcints and their
addresses; ESDTAB is created by the
stand-alone DBTABIE module.

d. On-Line Terminal Entries

Not Applicable

3. Output Data Sets

Not Applicable

PAGE 4- -2-.

4. Reference Tables

TRQDSECT - Terminal Request Table
METDSECT - Module Entry Table

PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry the program checks for first time
entered. If this is the first time the program
is entered, an initialization of tables is
begun. Otherwise, the table initialization is
bypassed.

The first table built is an in-core duplicate
of the ESDTAB data set which has been sorted
by rBTABLE, a stand-alone program. The table
contains all the external symbols of the NASIS
load module in alphabetic order along with the
relative offset in the module and the segment
number the external symbol resides within. A
segment greater than 1 implies a transient entry
point.

The second table built is a quick index of first
letters into the first table built. When this
table is built, initialization is complete.

The requested entry point is now looked for in
the in-core ESDTAB. The index table is used
to position the first ESDTAB entry to begin
searching.

If none is found, a diagnostic is sent to the OS
operator and a return is made to the callinq
program.

Upon finding the requested entry point, its
segment number is checked to determine
transiency.

A non-transient module can be called (branched to)
immediately; therefore, the registers are set
up for any parameters and the call is made.
Afterwards, the caller is returned to.

A transient module must be made resident before
being called. This is accomplished by putting

PAGE 49+

the entry point to be loaded into QMQ0ODRQ of the
TRQDSECT and calling the MTTCALL entry in the
monitor (M!TSUP). Upcn return the requested
module will have been loaded and its address will
be in METENTRY of the METDSECT pointed to by
register 9.

This program also maintains the number of users
for any claded transient module. To do this the
METUSERS field in MITESECT is incremented before
the control is passed to it.

The registers are set up for any parameters and
the call is made.

Upon return from the transient module the METUSERS
field is decremented. Furthermore, the TROMODRQ
field is blanked out to show no transient activity
for this terminal.

Finally the caller is returned too.

F. CODING SPECIFICATIONS

1. Source Lanquage

This module is written in IBM Assembler language for
speed and efficiency.

2. Suggestions and Techniques

The initialization process must be uninterruptable
to prevent reentrance during its occurrence; the
MTTMUST function should be emrloyed to facilitate
this.

TERMINAL

ANY
APPLICATION

PROGRAM

TRQDSECT
ESDTAB P DBCALL E

TABLE

PROGRAM
TO BE
ICALLED

Figure 1i, I/O BLOCK DIAGRAM

DBCALL (1
CALL MTTSU
TO LOAD

FRST. N MODULE
ALL EVER A

INCREMENT
BUILD TABLE USER TALLY
OF ENTRY FOR MODULE
PTS.FROM

ESDTAB

SETUP
iBUILD AN j REGISTERS
JINDEX FOR BRANCH TO
ENTRY PTS. ENTRY PT.
TABLE

SDECREMENT
EARCH FOR USER TALLY
EQUESTED FOR MODULE
NTRY PT.

SEND
N DIAGNOSTIC

FOUND? -, TO OS RETURN
OPERATOR.

ENTR
-POINT
RANSIE C

iSETUP
I.EGISTERS

'BRANCH TO
;ENTRY PT.

/ Figure 2. TOP LEVEL FLOWCHART
RETURN)

PAGE 3444

TOErC C.1 - UTILITIES JOIN (REJOIN)

A. MODULE NAME

Joining new NASIS users
Program-ID - NDBJOIN
Module-ID : tEJOIN

B, ANALYST

Edward J. Scheboth, Jr.
Neoterics, Inc.

C. MODULE FUNCTION

This prcoram gives the NASIS DEA the ability to create
and maintain the data set NASIS.USERIDS which contains
the NASISIDS under which users of the NASIS system are
given access to MT/T, the Retrieval system and the
various dataplices. The data set NASIS.USERIDS is
organized under ISAM, and has as a key the eight byte
NASISID of each joined user, with a variable record
format containing his password, timeslice, user
authority, and list of permitted files.

This program has as a secondary function the task of
displaying for DBINIT the files available for retrieval
to a specific user.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data sets

a. Parameter cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The NASISIDS data set. (For complete
detailed specifications of this file see
Section III of the Development Workbook).

d. On-line Terminal Entries

PAGE +-r-/

Valid JOIN commands.

3. Output Data Sets

a. Output Files

See 2.c

b. On-line Terminal Displays

See 2.d

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The primary entry point of this program (DBJOIN)
is responsible for maintenance and display of the
NASIS.USERIDS file. It is necessary that this
file be safeguarded from tampering and it
therefore should be password protected.

The main routine should have a prompt validation
loop which calls the subordinate functions such
as Join, Quit... etc. making the program more
modular and much easier to modify. To enhance
speed of the system these calls should not be to
internal procedures but should be pseudo calls set
up using the extensive facilities of the PL/1
preprocessor to simulate these calls.

Program termination should be thru the common END
convention set up in TS/2. All parameters to the
commands shall be obtained using the new TS/2
facilities.

The proper value of the first parameter signifies

PAGE +3-/

this module is to display the available files for
DBINIT, This is really a sub function of the main
routine's Display function and paging entry and
should be coded as such to facilitate coding.

F. CODING SPECIFICATIONS

1. Source Language

As much as possible of the RDBJOIN module is coded
in the IBM PL/1 programminq language. The input
and output coding for accessing the file
NASIS.USERIDS is handled by a direct call to the
DEPAC assembler routines. All terminal access is
handled by TS/2.

2. Suggestions and Techniques

Refer to Section III of the Development Workbook
for all data set specifications.

TERMINAL
CONTROL

NDBINIT

NDBJOIN

NASIS

USERIDS

Figure 1. I/O BLOCK DIAGRAM

DBJOIN PAGERR JOIND

PROMPT
AND bb

VALIDATE
PASSWORD

PROMPT

FOR
FUNCTION

VALIDATE
FUNCTION RETURN
OR END

IS THI DISPLAY
SUB FUNCTION

UPDATE

SUB
FUNCTIONS

Figure 2. Top Level Flowchart

PAGE

TOEIC C.2 - ESD TABLE GENEBATOR

A. MODULE NAME

Frogram-ID: NDBTAELE
Module-ID: DETABLE

B, ANALYST

Tom C. Moser, William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

This module reads the composite external symbol
dictionary (CESD) of the NASIS load module to
generate an ordered ESDTAE file tc be used by
DBMTAB (to generate the MODTAF file) stand-alone
and by DEBCALL (for general call by name) of execution
time.

D. DATA REQUIREMENTS

1. I/O Block tiagram

See Figure 1.

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

1. DDNAME MODULE: This file is the load
module from which the CESD is to be
processed,

2. DUDNAE SORTIN: This file is built by
this module from the CESD; it contains
the external symbol name, its segment
number, and its relative offset. DBTABLE
then calls the OS Sort facility to sort
this file. After the sort this file is
rewritten to form the ESDTAB file.

3. DDNAME SORTOUT: This file is the output
file from the OS Sort facility. It is

PAGE 440

read by DBTABLE following the Sort.

4. Sort work files: These files are used by
the IBM OS Sort utility. Refer to the IBM
Utilities Manual for details.

d. On-Line Terminal Intries

Not Applicable

3. Output Data Sets

a. Output Files

1. DrNAME SORTIN: This file is initially an
output file. After being processed by
the Sort facility, this file is rewritten
to become the final FSDTAB file,

2. Sort work files used by utility.

3. SYSPRINT: Sort Diagnostics.

b. On-Line Terminal risplavs

Not Applicable

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4, Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top level flowchart

See Figure 2.

2. Narrative

On entry DETABLE opens the MCDULE and SORTIN files
and writes a dummy (zeroes) record to the SORTIN
file; this record will be used later for control
information in ESDTAB, Then the load module is
read to get all ESD-tvpe records. Each ESD-type
record is written to SORTIN. Having read all

needed records, DETABIL attaches the Sort utility
to sort the external symbols in the ESD records.
When the sort is finished, SORTOUT file has the
sorted ESD records. This file is read into core.
The segment and offset information are posted
into an ESDTAB record with each external symbol
name, rendering a 32-tvte ISETAB record - 8 bytes of
name, 8 bytes of data, and 16 bytes of zeroes.
The SOBTIN file is re-opened for output; the first
record written is 8 bytes of zeroes, followed by
4 bytes of total records in the ESDTAB file,
followed ty 4 bytes of total segment 1 csects
found in the CESD, and followed by 16 bytes of
zeroes. Then all the ESDTAB records are written
from core.

. CODING SPECIFICATIONS

1. Source Language

DBTABLE is written in OS/360 Assembler
language.

2. Suggestions and Techniques

Not Applicable

/H1

LOAD
MODULE
CESD

DBTABLE

SORTIN
(and

ORTOUT
ESDTAB)

OS
SORT

Figure 1. I/O BLOCK DIAGRAM

/95
DBTABLE

OPEN MODULE
AND SORTIN
ILES

WRITE DUMMY
SORTIN
RECORD

READ ALL
CESD RECS.
FROM MODULE
FILE,WRITE
TO SORTIN

ATTACH
SORT,
WAIT ON
ECB

DETACH
SORT

FORMAT
SORTED
RECORDS
FOR ESDTAB

WRITE
ESDTAB
RECORDS RETURN
SORTIN
FILE

Figure 2. TOP LEVEL FLOWCHART

PAGE 442

TOFEC C.3 - MODULE TABLE UTILITY

A. MODULE NAME:

Program-ID - NDBMTAB
Module-ID - DENTAB

B. ANALYST

William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

This module runs stand-alone to process records from
the ESDTAB data set (created by EBTABLE) and generate
records for the MODTAB data set. The MODTAB records
are then used during the initialization of the NASIS
monitor.

D. DATA REQUIREMENTS

1. I/O BLOCK DIAGRAM

See Figure 1.

2. INPUT DATA SETS

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

SYSIN - This file is used to convey the
number of regions the MOETAB data set is
to have addresses and segment numbers for
per transient (non-segment 1) module. If
this file is omitted, three regions are
assumed. This file should contain one
card with the syntax

REGIONS = i

where i is the number of regions 1, 2, or 3.
The keyword can start in any column.

c. Input Files

This module reads the ESDTAB data set created
by the DBTABLE module; it expects a DDNAME
of ESDTAB.

PAGE 44+

d. On-Line Terminal Entries

Non Applicable

3. OUTPUT DATA SETS

a. Output Files

This module creates the MCDTAB data set: it
expects a DDNAMn of MODTAE for this file.

The SYSPRINT file is used to provide
processing information either assumed or
received from the input files. Also,
error diagnostics appear on this file.

b. On-Line Terminal risplays

Not Applicable

c. Formatted Print-Outs

This module provides a copy of the information
written to MODTAB on the SYSPRINT file. For
each module processed, the time limit,
region offsets, and segment members per
region are written in tabular form. All
values are decimal.

d. Punched Card Output Piles

Not Applicable

4. REFERENCEt TABLES

Not Applicable

E. PROCESSING REQUIREMENTS

1. TOP LEVEL FLOWCHART

See Figure 2.

2. NARRATIVE

Upon entry this program attempts to open the SYSIN
file. If the open is successful the first card
is read in and interpreted for the 'REGIONS'
keyword value. If the value is not greater than
one or not less than four or SYSIN could not be
opened, a default value of three regions is
assumed.

PAGE

The first ESDTAB record is read. This record
contains the number of r4mairing FSDTAB records
there are to read.

All the ESDTAB records are read. Only the CSECT
external symbols are checked and only those with
a blank, '2', or '3' as the eigth character. This
test provides all non-segment-one csects; i.e.
transient csects. Having found one, the program
saves the ESDTAB record.

When all ESDTAB records have been read, then the
MODTAB file is opened and a dummy fixed record
is written.

All the saved ESDIAB records are sorted so that
the csects with a blank eighth character are in
alphabetical order followed (each) by their '2'
and '3' suffixed counterparts. For example,

DBAAAA
DBAAAA2
DBAAAA3
DBCCCC
DBCCCC2
DBCCCC3
etc.

After being ordered in this fashion, the data for
each module and its '2' and '3' corresponding csects
are combined into one MODTAB record and written out.

Concurrently, the same MODTAE information is written
to the SYSPRINT file in tabular form.

The MODTAE file is closed and reopened. The first
record is read and filled with MODTAB number of
records and number of regions used; the first
record is rewritten and the file closed.

F. CODING SPECIFICATIONS

1, Source Language

This module is written in IBM PL/I language.

2. Suggestions and Techniques

Not Applicable

SYSIN

ESDTAB DBMTAB MOD
DATA DAT A
SETSET

TABLE
PRINTOUT,
DIAGNOSTIC

Figure 1. I/O BLOCK DIAGRAM

DBMTAB

SYSIN Y READ WRITE FIRS
EFINED REGIONS MODTAB REC

INFORMATION AS DUMMY

VALID SEARCH
SAVED ESD
RECS. FOR
MODULE PER

ASSUME REGION
3

REGIONS

FORM REGIOl
INFO. PER
MODULE INTC

READ FIRST 1 MODTAB
ESDTAB REC.
RECORD

WRITE
MODTAB
RECORDS

ESDTAB N
ECS.

PRINT
MODTAB

READ AN INFORMATIOE

ESDTAB
RECORD

REWRITE 1ST
MODTAB REC.
WITH

WANT STATISTICS

RETURN
SAVE ESDRT
RECORD

Figure 2. TOP LEVEL FLOWCHART(B

PAGE +5Z

TOPIC C.4 - SET FILE INITIALIATICN

A. MODULE NAME:

Program-ID - NDBSETI
Module-ID - DBSETI

B. ANALYST

Tom C, Moser,
Neoterics, Inc.

C. MODULE FUNCTION

This module runs stand-alcne to attach the SETINIT
module to pre-format the Set File; this module also
creates the Sets Information File.

D, DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

Not Applicable

3. Output Data Sets

a, Output Files

This module creates the Sets Information
File.

b. On-Line Terminal risplays

Not Applicable

c. Formatted Printouts

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING RQOUIREMENTS

PAGE

1. Top Level Flowchart

See Figure 2

2. Narrative

This module attaches the SETINIT module to
pre-format the Set File. The attached sub-
task will abend with a completion code of
D37 or B37 signifying the end of the
allocated space was encountered. Concurrently,
the SETINIT module updates the VOLTBL table.
When the attached sub-task finishes, DBSETI
opens and writes the data in the VOLTBI table
to the Set Information file. After closing this
file, the module returns.

F. CODING SPECIFICATIONS

1. Source Language

This module is written in IBM OS/360 Assembler
language.

2. Suggestions and Techniques

Not Applicable

LU7

DBSETI

SETS
INFORMA
TION
ILE

Figure 1. I/O BLOCK DIAGRAM

DBSETI

ATTACH
SETINIT

WAIT FOR
ATTACH- TO
COMPLETE

WRITE SET

FILE DATA
IN VOLTBL
TO SETS
INFORMATIO
FILE

RFigure 2. TOP LEE FOWCHART

Figure 2. TOP LEVEL FLOWCHART

PAGE +4-

TOIC C.5 - SET FILE PIE-FORMATTING

A. MODULE NAME

Program-ID: NSETINIT
Module-ID: SETINIT

B. ANALYST

Tom C. Moser,
Neoterics, Inc.

C. MODULE FUNCTION

This module is attached by DBSETI to pre-format the
Set File. SETINIT writes fixed-length records to
a one or multi-volume DEAN file until it runs out
of space, abending with a D37 or B37 completion code.
While the BDAM file is being pre-formatted, the
VOLTBL table is kept current with the Set File data.
Control is returned to DBSETI.

D. DATA REQUIREMENTS

1. 1/O Block Diagram

See Figure 1

2. Input Data Sets

Not Applicable

3. Output Data Sets

This module writes fixed records to pre-format the
Set File.

4. Reference Tables

Not Applicable

E. PEOCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

See MODULE FUNCTION (C).

F. CODING SPECIFICATIONS

PAGE

1 Source Language

This module is vritter in IBS OS/360 Assembler
language.

2 Suggestions and Techniques

Not Applicable

I 7

SETINIT

.SET
FILE

Figure 1. I/O BLOCK DIAGRAM

SETINIT

WRITE
SET FILE
RECORD

UPDATE
VOLTBL
DATA

NOTE: MODULE WILL ABEND WHEN SET FILE IS FULL

Figure 2. TOP LEVEL FLOWCHART

PAGE 44+

TOFIC D.I - MAINTENANCE, FREE-FORM PABAMETER PARSER

A. MODULE NAME

Program-ID - NFPARM
Module-ID - FPARM

B. ANAYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

This routine reads in a card input file and parses
program parameters that are entered on cards with
Keywords. The Keywords are saved in a controlled
table with their parameter values.

D. DATA REQUIREMENTS

1. 1/0 BLOCK DIAGRAM

See Figure 1.

2. Input Data Sets

a. Parameter Cards

Not applicable

b. Punched Card Input Files.

The user enters parameters freeform on the
sepin card input.

c. Input Files.

Not Applicable.

d. On-line terminal entries

Not Applicable

3, Output Data Sets

Not Applicable

4. Reference Tables

Keyvords with their parameter values are saved in a
controlled structure.

E. PEOCESSING BREUIREMENTS

1. Top level Flowchart

See Figure 2

2. Narrative

a. Initialization

Initialize controlled table of keywords and
parameters to null.

b. Read Card

Read card and strip off leading and trailing
blanks. Save string in work area.

c. Parse for Equal Siqn

Search for equal sign if no equal sign, print
diagnostic and terminate. Save keyword in
keywordTable. IF left paren, go to section d.
Go to section e.

d. Multi comma search

Loop through elements and save parameters
in table.

e. Single_Field

Search for a comma. Save parameter in table.
Go to section b if no comma. Go to section c.

When no more input cards, return to caller.

F. CODING SPECIFICATIONS

1. Source Language

The module is coded in IBM P1/I language.

2. Suggestions and techniques

Not Applicable

MAINTENANCE
MODULE CARDIN

NFPARM

Figure 1. I/O BLOCK DIAGRAM

ENTER

INITIALI-
ZATION

READ
CARD

LAST Y ES
ONE? RETURN

PARSE

PARAMETERS

Figure 2. TOP LEVEL FLOWCHART

PAGE 45--15

TOPIC D.2 - MAINTENANCE, PRIN FILE ECUTINE

A. MODULE NAME

Proqram-ID - NPETTILE
Module-ID - PBTFILE

B. ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

This routine prints the print line from an external
controlled structure to the sysout device which is
usually the class A printer for an OS system.

D. DATA REQUIREMENTS

1. I/O BLOCK DIAGRAM

See Figure 1,

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card input files.

Not Applicable

c. Input Files

Not Applicable

d. On-line terminal entries

Not Applicable

3. Output Data Sets

PRTOUT is the only cutput dataset. This is a
CLASS A print output file.

4. Reference Tables

External PRT structure is used to get the print
line, First byte is the printer control
character. Next 132 tytes are the print line.

PAGE

E. PBOCESSING REQUIREMENTS

i, Top Level Flowchart

See Figure 2.

2. Narrative

Check for valid print control character. IF
not valid, set print control character to a
blank. (single space), Construct print work
area from external structure. Write the print
line. Return to caller.

F. CODING SPECIFICATIONS

1. Source Language

The IBM PL/I language is employed.

2. Suggestions and techniques

Not Applicable.

MAINTENANC
MODULE

NPRTFILE

-I
CLASS A

PRINT

Figure 1. I/O BLOCK DIAGRAM

ENTER

ALID NO PRT-CTL
CTL CHAR- = I

YES

WRITE
PRINT
LINE

RETURN

Figure 2. TOP LEVEL FLOWCHART

PAGE 453

TOERC D.3 - MAINTENANCE MAINLINE

A. MODULE NAME

Maintenance Mainline
Proqram-ID - NDBMNTN
Module-ID - DBMNTN

B, ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

The Maintenance Mainline program is an independent
module which carries out any actual changes necessary
to correct, update, or expand the file. The specific
changes, which can be additions, deletions, or
replacements, are accepted by Maintenance in the form
of transactions. The transactions are kept on a data
base named 'TENSCT' and are created and maintained by
the CORRECT command.

The transactions can be applied to the data base on a
record, field, or element basis. Those transactions
which are successfully applied to the data base are
deleted. Therefore, after the successful completion of
a maintenance run, the cnly transactions remaining on
the 'TRNSCT' data base are those which need correcting.
The Maintenance Mainline acquires the necessary
statistics while executing and causes the 'STATIC' data
base to be updated (via a call to NDBUPDST). The
Maintenance Mainline is run only in batch mode. The
restart capability of the maintenance run is inherant
because of the deleting transactions as they are
applied.

D. CATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Filename must be entered as 'PARM' on the
program execute card.

b. Punched Card Input Files

PAGE +SW

Not Applicable

c. Input Files

The maintenance program requires all of the
files which make up a data base as input to
the module.

A particular execution of maintenance may
require any or all of the individual data
files, depending upon the makeup of the
transactions. Whereas the files in a data
base are the source of the old or current
data for maintenance, the transaction data
base (TRNSCT) is the source of the new or
replacement data (i.e., the changes). The
complete description of the transaction queue
is found in the dataset specifications. The
transaction data base (TRNSCT) contains
information concerning the data base, file,
record, field and element to be maintained,.
as well as the type cf maintenance and the
new data.

d. On-Line Terminal Entries

Not Applicable

3. Output rata Sets

a. Output Files

The entire files of a data base may be used
as output files for maintenance. As in the
case where the files of a data base are used
for input, the individual data files are
output files cnly if specific transactions
require them.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

PAGE +Ss

Since DEFL/I is used extensively in this module,
the various combinations of DBPAC errors should be
handled properly. These are in an array to
determine program prccessing after error occurs.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. NDEMNTN(DBMNIN-entry point)

The Maintenance Mainline program is an
maintenance module which carries out changes
to the files comprising a data base. The
program receives directives to modify a data
base file or files from the maintenance
transaction data base (TRNSCT).

b. Initialization

The key fields descriptor is read and upon
finding it, the key field's length is
saved.

If any errors are incurred while reading the
descriptor file, the proper message is
emitted and the run terminated. If not, then
the use of the descriptor file is at an end
and it is closed.

It is now time to initialize the transaction
file by opening it, positioning it and making
the first record to be processed available.

An error on opening of the transaction data
base could mean that there is no data on the
'TENSCT' data base, or that the 'TRNSCT' data
base is already opened for update or output.
In either case, appropriate error messages
are issued and the run is terminated.

To position the data base (after opening), we
do a Read by Kev NOLOCK. The key we create
consists of the data base name concatenated
with the owners-ID contatenated with all bits
off. This should represent a low key value.
This yields either a successful read or a
DBPAC error of 108. We expect the error to
occur. Then a sequential read is performed

PAGE 5fr

and we obtain the first transaction to be
processed. Before continuing a get field is
executed on the key and its contents are
checked. If the key does not represent the
proper data base name, owner-ID combination
an error message is emitted and the run is
terminated.

Otherwise, we are prepared for the final
stage of initialization.

The regular transaction data base (TNSCT)
routine is set, the data base which is being
updated has its error routine set and it is
opened for direct update or sequential
output.

The initialization process is complete.

c. Delete the Transaction

If the transaction is successful, it is now
deleted from the TRNSCT data base,

d. Read Transacticn

The transaction file is a data base which
consists of only an anchor file and no
associated cr inverted files. The
transactions are read sequentially. The Data
Base Executive performs all of the necessary
I/C operations. After a transaction record
is located by the Data Base Executive, GETS
are executed on all of the desirable fields.
These fields are disseminated to various
work areas. Then, checking is performed
based on the presence and/or absence of data.
The validation of this data is based-upon the
following:

See Figure 3

If there is an error detected during this
initial processing, then the transaction is
in error.

e. E.O.D. (end-of-data)

The end-of-data is only detected on the
transaction data base. When this condition
is detected, all the files are closed,
appropriate messages are issued and the
processing continues at the reset the

PAGE t57" /

switches, section (q).

f, Reset the Switches

This section of code is executed antecedent
to the occurence of an end-of-data condition.
The function required at this point of time
is a reseting of the 'DATA' switch on each of
the descriptor regions. The files of the
data base are manipulated to detect the
existence or non-existence of data and the
'DATA' switches of the corresponding files
are set accordingly.

g. DEL RTN: Delete field routine.

This routine uses the #FIELD function to
reput all the elements in the field to null.
If it is the key field, then the entire
record is deleted.

h. ADD RTN: Add routine.

This is the add record and add element
routine. If the field name is the key field
then this name is stored to indicate to the
maintenance routine that a new record is to
be added to the file. If the field is not
the key field, then a test is made to see if
the transaction key is already present. If
not, then the key is compared to the stored
key from the last add transaction with a key
field. If they do not match, an error has
occurred and is flaqqed; otherwise, a record
is created with the stored key. The new
element is then put to the record. Control
is passed back to section (e) on completion
of this transaction.

NOTE: If suhfile key is present in
transaction then sutfile record is obtained.
If SUBCTL field is present then new subfile
record is located.

i. CHG_RTN: Change Routine.

If no start or end field, given element is
replaced. Using the key passed in the
transaction record, the appropriate record is
read in from the data base. The field is
obtained, by name, as indicated in the
transaction, At that point, the value of the
returned field element is compared to the

PAGE +50-Z -

'old' data element in the transaction. If no
match is made, a test is made as to whether
the returned element is null, thereby
signifying the end of the field. If that is
the case, then an error has occurred and is
indicated. If the null element was not
detected, then the next element is obtained
and the process repeated. If a match does
occur, then the 'new' data element from the
transaction record is reput to the record.
If the 'new' data element is null, then the
element is deleted. Continue processing with
section (e). If a start and end field is
present then a field context operation is
performed.

The maintenance program can carry out changes
to portions of large fields without the
entire field cn the transaction entry of
record. To begin, the record is read into a
large enough area to hold the maximum record
using the key provided in the transaction.
The field in question will then be obtained
and an iterative process is applied wherein
the 'old' data value is compared
sequentially across the field from the
starting location to the ending location.
Whenever a match is found, the 'new' data
value is used to replace the 'old' in the
field and a count is kept of the number of
replacements. When the end of the search
range is reached, the count is tested. If no
matches were made, then that error is
recorded. The processing will continue with
section (e).

F. CODING SPECIFICATIONS

1. Source Language

As much as possible of the Maintenance Module is
coded in the IBM proqramming language PL/I. The
input and output coding for access to files in a
data base is handled through an extension to that
language, known as DBPL/I.

2. Suggestions and Techniques

a. Much of the verification of correct access to
files in a data tase is handled within the
DBPAC routines. Full advantage of these
features was taken for all I/O processing.

PAGE 495

b. In the preceding narrative, not every
instance of the need for an informative
message was indicated. During
implementation, all appropriate messages are
included to increase the understanding of
the user.

c. While not noted in the narrative, it is
necessary to test the return codes from
every input and output operation. In those
cases where errors occur, messages are
written out and the task terminated unless a
correction can be applied, in which case the
processing can then continue.

d. Whenever it becomes necessary to terminate
the maintenance routine at any point, it is
desirable to make every attempt to restore
the data base to a normal condition. In most
cases, this action involves resetting control
switches found in the header records of the
descriptor file. This action makes possible
subsequent processing on the data base which
might correct the original problem and also
allows continued retrieval from all usable
portions of the data base.

TRNSCT
SYSIN

DBMNTN

STATIC DATA-
BASE

Figure 1.-I/I BLOCK DIAGRAM

NDBMNTN

-- AD D --RTN-- --- -

INITIALIZE
THE

PROGRAM

DEL RTN

A

DELETE [HG RTN F
TRANS.

READ ERROR
NEXT
TRANS,

ERROR

HANDLE
Y RESET

EOD FILE
? :SWITCHES

4A
OPCODE I RESET

PROGRAM
AND GET

DD DEL CHG I
AUDIT
ENTRIES

RETURN

Figure 2. TOP LEVEL FLOWCHART

S: REQUIRED PARAMETER

X : NOT REQUIRED

ADD DEL CHG

KEY '

NASISID

OPCODE J

FIELD x J /

START AND END X X X

OLDDATA X X

INEWDATA X X

"SUBKEY vx Jx X- x

[CTLFLD VX 1X X

Figure 3. PARAMETER TABLE

PAGE z& 7

TOPIC D.4 - MAINTENANCE LOAD/CEEATE

A. MODULE NAME

Load/Create
Program-ID - NDBLOAD
Module-ID - DBLOAD

B. ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

This module provides a generalized file loading
capability for NASIS.

D. EATA REQUIREMENTS

1. 1/0 Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Parameters are keyworded and freeforn on
sysin card input.

b. Punched Card Input Files

Not Applicable

c. Input Files

1. The primary input file is the data set
containing the records to be loaded to
the data base. This file must be
indexed sequencial, with the keys having
the same format and valu as thats that
of the final data base.

2. The only other input file is the
descriptor data set for the data base
being loaded.

d. On-line Terminal Entries

Not Applicable

PAGE 464

3. Output Data Sets

a. Output Files

1. The primary output file is the dat-a base
which is being leaded. It must have
its descriptors fully defined
beforehand, but all other functions will
be handled by NDELOAD,

2. The other output file is the error file,
on which is written exact duplicates of
any input records that cannot be
successfully loaded.

3. A print file for diagnostics and program
status information is printed on Class A
output.

b. On-line Terminal Displays

Not Applicable.

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The module contains a table of error switches
which control the action to be taken for each
possible DBPAC error; abend, skip record, or skip
field.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Upon entry the program establishes interrupt
handling routines which will terminate if any
PL/I errors occur, or display statistical
data.

b. The program next reads in and parses the
input parameters applying defaults for any

PAGE 4 6 '2 z7

parameters that are not entered,

c. The next step is to open the descriptors for
the file specified. The file header switches
are reset in case the system crashed. The
index file headers are read, and if field not
indicated to invert, the loadable switch is
turned off.

d. The next function performed is the definition
and opening of the input file, the error file
and the data base itself. At this point, the
program checks the user's mode parameter, and
if it is restart passes control to section
(g) before continuing.

e. Finally, the program is ready to process
data. It reads an input record, passes the
record to the user written exit routine for
separation into its component fields. Upon
return from the exit routine, the program
tests the status bits, and if set properly,
begins writing the input data to the data
base, field by field. If any errors are
detected, and appropriate diagnostic is
written to the user and the action indicated
by that error's code in the ERROR CODE table
is taken. The opticns are to abend the
program, to skip the remainder of the record,
or to skip the field. When the field has
been completely processed, the routine
continues with the next input record, until
the data is exhausted.

f. When all of the data has been processed or
when a terminal error has been detected,
statistical counts are written on the user's
terminal along with a termination message.
All of the files are closed, and the status
bits of the descriptor header records of each
of the component files of the data base are
posted to indicate whether date exists on the
file or not. The program then terminates.

g. If the user specified a restart, the program
retrieves the last record written to the data
base. It then accesses the next record to be
written from the input data set. When the
operation is complete, processing continues
with section (e).

F. CODING SPECIFICATIONS

PAGE 16 6-

i. Source Language

This module should be written in the PL/I
Language.

2, Suggestions and Techniques

a. Because of the function of this module,
extreme care should he taken to code it as
efficiently yet as indestructibly as
possible.

b. Any place in the program where there is any
remote possibility of an error, there should
be a meaningful diagnostic.

C. The ERROR_CODES table was designed to be used
in conjunction with a label array. The
digits in the table are to te converted to
index values and an indexed branch taken
based onthe latel array.

d. The user-written exit routine is responsible
for assigning field names, field off-sets,
and field lengths.

DATA DATA
BASE IE
DESCRII

SYSINI

ROTORS

SYSOUTFigure . I/ BLOCK DIAGRAM

ATA

RDBLOAD.

INPUT
DATA DATA

BASE
SETATA I DATA

BASE gILES
DESCRI
TORS

9.igure 1/0II BLOCK DIAGRAM

PAGE

TOPIC D.5 FILE INVERTER

A. MODULE NAME

Maintenance - File Inverter
Program-ID - NDBIVRT1
Module-IE - EBIVRT1

B. ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

The inversion program (NDBIVBTT1) is a maintenance
program for data base file creation. The purpose of
the program is to take data from certain fields of a
data base and to post this data to an inverted index
file. This operation can be done automatically by
DBPAC during a normal file Icading operation, but it is
very time consuming and could therefore jeopardize the
successful completion cf the load. Further, by
separating this function out, in this manner, the
capability of creating inverted indices after a file
has been loaded and used is added to the repertoire of
the NASIS system. Finally, this separation also
permits the use of specialized techniques suitable
specifically to this function to reduce the amount of
time required for the entire process of loading and
index creation.

D. 1ATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Parameters are entered freeform with keyvords
on CARDIN input file.

b. Punched Card Input Files

Not Applicable

c. Input Files

1. Data Base: The primary input to the

PAGE -t"

Inversion module is the file being
inverted.

2, Data Base Descriptors: The file
descriptors are needed to Drovide
information.

3. Restart file: If the program is invoked
in restart mode, a restart file with
the restart key is needed,

d. On-Line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

Sortin File: This file is a QSAN file with
the value of the field being inverted
concatenated with the file key. This file
becomes the input to a DSOPT utility.,

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Ficure 2

2, Narrative

a. Parameter Parsing routine

Call PPARM routine and save parameters in
appropriate save areas.

PAGE °

b. Field stripping routine (step one)

If restart run, read in restart key and read
this file record. If range run, read first
file key to start at. Read sequentially the
input file, save the internal file key. Loop
through the index file suffixes. Loop
through the field name table. Loop through
the #FIELD for this field. Write out a
sortin file record. If end of file reached,
terminate. If end range key reached
terminate. If number of records to process
is reached, write cut restart file and
terminate.

F. CODING SPECIFICATIONS

1. Source Language

The Inversion program employs the IBM PL/I
programming language. The special extensions of
that language, called DBEI/I is utilized for all
access to files in the data base.

2. Suggestions and Techniques

Not Applicable

DATA
BASE RESTART SYSIN

FILE ARAMETERS

SYSOUT
INVERT 1 MESSAGE

FILE

SORTIN
FILES

Figure 1. I/O BLOCK DIAGRAM

ENTER A B

USER READ READ
INPUT- DATABASE RESTART

I FILE

PARAMETER
PARSE

EEOF? E DATABASE
BY KEY

RESTART BUILD C
'R' B SORTIN

RECORD

E

ANGE Y
KEYS WRITE

SORTINEND

END

A

Figure 2. TOP LEVEL FLOWCHART

PAGE 44-

TOPIC D.6 - MAINTENANCE, FILE INVERTE2

A, MODULE NAME

Proqram-ID - NDBIVRT2
Module-ID - DFIVRT2

B. ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

This module reads in the sorted file from DBIVRT1
and creates an inverted index file for a data base.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Parameters are entered freeform with Keywords
on CARDIN input file.

b. Punched Card Input Files Not Applicable

c. Input Files

1. Database Lescriptors: The file
are needed to provide information.

2. Sorted file from DBIVRT1. This file has
field values concatenated to file key in
sorted order.

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

1. PIEX File: This file is the output of
step three in the form on an index file
with the internal field value as the key.

PAGE 4-5

This file becomes the input to step four,
the Translaticn step for external indexing.

2, Range File: This file is the output of
step three if field is indexed with internal
format, and is the output of step four if
field is indexed with external format.
Range of keys to invert must have been
specified for this file to be produced.
This file becomes the input to the index
merge program.

3. Database Index File: This is the final
index file. It is the output of step
three if internal indexing, and is the
output of step four if external indexing.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PFOCESSING REQUIREMENTS

1. Top level Flowchart

See Figure 2

2. Narrative

a. Parameter Parsing routine

Call FPARM routine and save parameters in
appropriate save areas.

b. Get Descriptor information

Find the key length of the QISAM output
file. This will be the maximum length
of the fields being inverted on the same
index file. IF field is indexed external,
use length. IF index file is spanned, increase

PAGE

by one.

c. Write QISAM File

Read input file. IF Keys are the same,
concatenate file key onto list of keys.
IF list has reached maximum list length,
up the span character and initialize list
to null. IF keys are different, write out
index record. IF end of input file reached,
write out last index record and check to
see if external indexing. IF external
indexing, proceed to next section. Display
record counts for user and post the index
descriptor data switch.

d. Translate Keys routine

Read input file sequencially. Search key
for first blank character after first non-
blank character. Use this parsed string to
pars to field formatting routine. Replace
internal value in key with external value.
IF end of file reached, pcst data bit in
index header descriptor record. IF more
field names in table. gc to translate keys
routine again. Terminate the program.

o CODING SPECIFICATIONS

1. Source Language

The IBM OS PL/I programming language is used.
The special extension of that language, called
DBPL/I is utilized for all access to files in
the database.

2. Suggestions and Techniques

Not Applicable.

ESCRP
FILE SYSINJSYAS ETRS

SORTOUT PARAMETERS
FILE

SYSOLT
INVERT 2 MESSAGE

FILE

INTERN LEXTERNAL
KEYED KEYED
INDEX INDEX
FILES FILES

Figure 1. I/O Block Diagram

ENTER A B

USER
INPUT READ TERNA D.

SORTOUT INDEX

Y

RESTAR B
READ

'T' EOF Y
? AB INTERNAL

INDEX

RESTART 2 LBUILD EOF

KEYS

ERMINATE)
NEW N TRANSLATE
VALUE A EA

WRITE
WRITE
EXTERNALINDEX
INDEX

D

Figure 2. Top Level Flowchart

PAGE 4--

TOPIC D.7 - INDEX FILE MERGE

A. MODULE NAME

Maintenance - File Merger
Program-Id - NDBINDM
Module-Id - BEINDM

B. ANALYST

Edward McIntire
Neoterics, Inc.

C. MODULE FUNCTION

The merge module is an independent program whose
function is to create an updated index file for a
database. The updating of the index file can be done
in place or to a new index file. This new index file
will be named 'INDMRG.' JIFILE NAMEI1'.'11FIELD NANE'
and it will have to te renamed upon completion of the
merging operation. This module will also allow for the
processing of duplicate records if deemed necessary.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

The merging utility is most often invoked
from a terminal in conversational mode.
However, it is possible to initiate the task
in the non-conversational mode, just as in
the case of any other os task. In batch
mode, the format of the punched card input is
the same as when terminal input is used to
invoke the routine.

c. Input Files

1. Index File: The primary input to the
merge program is the current index file
that is to be updated, and the update

PAGE 494- f-

index file that is to be merge with the
current index. The anchor descriptor
file is needed to provide field
informaticn.

2. Parameter File: If the user wishes to
stop processing he may do so by pressing
attention and responding 'y' to the
prompt message. Thus a parameter file
is created for input to further
restarts. This will minimize the chance
for user input error and insure restart
at the proper key. This file consists
of the last key processed on the current
index file. This file is a SAM file
used only in the index merge program.

d. On-Line Terminal Entries

All of the terminal entries to the merge
program are in the form of responses to
prompting messages from the program itself.
The one exception to this rule is the initial
command with its parameter to invoke the
procedure. The purpose of the terminal
entries are to establish file and field
names, new file or inplace merge, process
dups or not, firstpass or restart, and if the
user wishes to quit processing or not.

3. Output Data Sets

a. Output Files

The output data set is the index file created
by the merge program. This data set can take
two forms:

1. The current index file updated
inplace.

2. A new file created by the merging of the
current index with the update index.

b. On-Line Terminal Displays

All on-line terminal displays for the merge
program follow the same format. The TSPL/I
facility of the system is utilized to request
entries at the terminal and display progress
information.

c. Formatted Print-Outs

PAGE 4'79-

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Prompting

Prompt the user for first pass. If it is not
the first pass, go and read the parameter
file. Prompt the user for the anchor file
name, for new file creation or merge in
place, for the processing of duplicates or
not, and for the inverted field name. The
user must enter a valid response to all of
the prompts or he will be reprompted. A read
sequentially of the anchor descriptors is
done until a fixed field with an offset of
four (4) is found. That, in fact, is the key
descriptor and its length is saved. The
index field is also checked for validity, if
it is not a valid index, then a reprompt is
initiated. Following this the index
descriptors are opened and read sequentially
until the index field length is obtained, and
the spanned indicator is checked and it's
value is saved. In all of the above cases if
a critical error is encountered an error
message is displayed and the program is
terminated.

b. Write Parameter File

If the user deems it necessary to stop
processing during the merging operation, he
can press the attention button and the total
records processed will be displayed. Also, a
message will be displayed asking if he wishes
to quit processing. When the user replys
with a quit processing command the following
occurs:

PAGE +eo

1. Quit switch is set.

2. Processing is continued until a clean
close can be carried out.

3. Parameter file is opened and the key of
the last record written is written to
the parameter file.

4. Parameter file is closed.

5. Program branches to end of job
routines.

c. Read Anchor Descriptors

DBEAC is utilized to read sequentially the
anchor file descriptcrs and retrieve the
field that is indexed and the anchor key
length.

d. Read Index Descriptors

DBPAC is utilized to read sequentially the
index file descriptors and retrieve the index
key length and the spanned indicator.

e. Read Parameter File

If not the first pass, the paraneter file is
read to get the needed key for the restart.
The restart key is used as the key and a get
by key is done on the current index file.
Also a read by key is done on the update file
to find its starting position. From here we
go to normal reads on the input files for
further processing.

f. Write Index File

The writing of the index file can take two
different forms.

1. Merge Implace.

If the user decides to merge to the
current index file the new records will
be built in core and tabled there until
a unique record is read. If a record is
longer than the maximum allowable
length, then create a spanned record by
adding cne to the spanned record
character. Then rewrite any existing

PAGE 4-9-,

records and write any new records that
may have teen created. When an update
record does not match a current record,
the update record and any with the same
key are written to the current file.

2. merge to New File.

The merge to a new file is much the same
as the merge inplace. The differences
are listed below:

a. An out put file is created with the
same attritutes as the current
index file.

b. There will be no rewrites to the
new file.

c. All current and update records will
be written to the new file. If
either file finishes first the
other will be read and written
until it is finished.

g. Attention Interrupts

Attention interrupt handling was discussed in
section 'E', sub-section '2', Item 'B'
(Write Parameter File). Any questions you
might have concerning this area should be
referred there.

F. CODING SPECIFICATIONS

1,. Source Language

The merge program employs the IBM PL/I Programming
Language. The special extensions of that
language, called EBPL/I and TSPL/I, are utilized
for access to file descriptors in the database
and for all terminal communication, respectively.
Also, the merge program employs assembler
routines to handle all I/O during the execution of
this program, except for the writing of the
parameter file which is handled exclusively by
PL/I.

2. Suggestions and Techniques

Not Applicable

CURREN UPDATE
INDEX INDEX DESC.

RE- FILE FILE- -

RENAIE SYSIN

RENAME PARAMETERI

SMERGE 4- -- DBINDM MESSAGE
j" INPLACE" FILE

- -

MERGE
RENAME NEW

FILE'

Figure 1. I/O Block Diagram

ENTER A G

USER READ READREAD
INPUT UPD

PARAMETE INDEX
FILE

FIRST N EAD
PASS -- MASTER EOF Y

INDEX BY ?
KEY

ERGE Y
INPLACE C READ

9 B\c UPD UPD = N
INDEX MASTER
BY KEY

READ
MASTER B MERGE ALL
INDEX MATCHING

RECORDS

D

EOF Y

READ NEW
UPD FILE

EOF Y

WRITE
NEW FIL

DFigure 2A Top Level F

Figure 2A. Top Level Flowchart

PAGE 84-

TOFIC D.8 - DATA PASE RECORD IENGIHS

A. MODULE NAME

Program-ID: NDBRECL
Nodule-ID: DERECL

B. ANALYST

William H. Petrarca,
Neoterics, Inc,

C. MODULE FUNCTION

This module executes stand-alone to read one or all
files of a data base (excluding the descriptors) to
determine the maximum record length within the
respective file(s). When found, these maximum
record lengths are posted in the respective file
header descriptors as the second variable field,
just past the security codes. Although the record
length is posted as a variable field, it is always
a full word (4-bytes) preceded by a two byte field
length with a value of 6. The DEPAC module
interrogates each header record for the presence
of this field at every data base open. When present
this value is used to alloccate the size of the
input buffer for the respective files. If absent
the default value of 3996 is used as a maximum.

Only DB2 type descriptors are accepted by this
module.

D. DATA REQUIRENENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

The EXEC card PARE character string must
contain the data base or data base file to
sweep. The string must be of the form
'FILE = name' where name can be just the
data base name, such as DB2TDB, to imply
that all files of that data base are to be
analyzed or the name can be the data base
file name, such as EB2TEEZ, to imply only
one file to analyze.

PAGE +f1 Z

b. Punched Card Input Files

Not Applicable

c. Input Files

This program reads the particular data base
descriptors along with any other data base
files to be analyzed. The descriptors and
the requested files to be analyzed must have
DD cards provided; the DNAfMES are arbitrary.

d. On-Line Terminal Fntries

Not Applicable

3. Output Data Sets

a. Output Files

This module revrites the file header descriptor
records of the data base descriptors for those
files analyzed.

b. On-Line Terminal tisplays

Not Applicable

c. Formatted Print-Outs

This module provides messages with the
maximum record lengths found per file
on the SYSPRINT file. Any errors
encountered are also diagnosed.

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not .Applicable

E. FFOCESSING REQUIREMENTS

1,. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry DBRECL validates the parameter

PAGE 8

string; invalid parameters are diagnosed at
SYSPRINT and the program returns. With a
valid parameter, DBRECL assumes a parameter
of length less than seven characters to imply an
entire data-base name; greater than seven implies
a particular file name.

If all the files of a data base are to be done,
then the descriptors are read sequentially to
determine all the file names. The names are
saved in a list, and the descriptors are closed.

If only one file is tc be analyzed, then it is
put into a list of one.

Then, for each file name in the current list the
following is done. The file is opened and
read sequentially. Each record length is compared
against the going maximum. If it is greater,
it becomes the going maximum. After all records
have been read, the file is closed and the
arrived maximum is saved in a 'length' list.
The found maximum for the file is printed on
SYSPRINT.

After all the files have been read, the
descriptors are opened again. The header
descriptors are read for each file name in
the list. If a maximum record length already
exists on the record, it is overlaid with the
newly found maximum. If none exists, the header
record length is increased by 6 and the newly
found maximum is added .on the end as a variable
field. The header record is rewritten. The
descriptor file is then closed.

For all file I/O, the ISAM assembler routines
in the DBDBIO module are used. Any DD or OPEN
errors are diagnosed with processing continuing
with the next file in the list. Likewise, any
read errors are diagnosed and the file skipped.

F. CODING SPECIFICATIONS

1. Source Language

This module is written in IBM PL/I.

2. Suggestions and Techniques

Not Applicable

ANCHOR INDEX DATA BASE
FILES

DESCRIP-
DBRECL TORS

MESSAGES
AND

DIAGNOSTICS

Figure 1. I/O Block Diagram

DBRECL

ALLG

ILE DIAGNOSE

PARM. N ERROR

VALID

NAEARETURN

L FILES

AND SAVE SAVE
ALRECORDL GIVEN
FILE IDS. FILE I.D.

PUT SAVED

FILE(S) IN A
LIST

'READ EACH
FILE IN LIST
TO FIND MAX.
RECORD LENGTH

IN EACH

READER HEADER
DESCRIPTOR
FOR EACH
FILE AND
POST MAX.
LENGTH;

REWRITE REC.

RETURN

11 'V T 1 T11 I

PAGE 44T

TOEIC D.9 - DESCRIPTOR EDITOR - ADD - CHANGE COMMANDS

A, MODULE NAME

Program-ID - NDBEDAC
Module-Name - DBEtAC

B.. ANALYST

Barry G, Hazlett
Neoterics, Inc,

C. MODULE FUNCTION

Those commands allow the user to create and modify
field descriptors.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDEErAC:

1. FIELD
2. FLD
3. FLD STRING
4. HDR
5. HDB STRING
6. X

PAGE 443

A description of these tatles can be found in the
dataset specificaticns of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2, Narrative

Upon entry into NDBEDAC a flag is set to indicate
if the ADD or CHANGE command was entered. The
routine DBEDGF is called to obtain a valid
fieldname. In ADt mode it must be a valid
non-existent and non-reserved fieldname. In
CHANGE mode it must be an existent non reserved
fieldname with the exception of the fields
FREEFORM and COMIENTS and it must not be a
superfield nor a subfile control field. If in
ADD mode a FLD structure is allocated, initialized
and posted with the fieldname.

The user is prompted for the field type and the
input is validated. If it is invalid, the user is
given a diagnostic and prompted for a new value.
If in update mode, the user is not allowed to
change the field type if it affects the field
length and the field appears in the fixed part of
the record. The user is also not allowed to make
the key field a bit field.

If there is more data in the parameter list 'TYPE'
the user is prompted for an alignment value. If
it is invalid, the user is given a diagnostic and
prompted for a new value. If no value is entered
a built in default value is assumed and posted in
FLD.

The field form is prompted for and validated. If
invalid, the user is given a diagnostic and
prompted for a new value. The anchor file key
field and bit field can only be of fixed form. In
Update mode, the user can not change fixed field
to a varying or elemental field, the necessary
values are posted in FLD.

The user is prompted for a field length and the
value is validated against prestored maximum
values for single and multielement fields. If it
is invalid, the user is given a diagnostic and
prompted for a new value. The correct values are
posted in FLD.

PAGE ltSt

If the field is non-elemental, go prompt the user
for a conversion routine, otherwise the user is
prompted for an element length value if necessary.
For several field types the only element length
value is posted in FLD. If the element value is
invalid, the user is given a diagnostic and
prompted for a new value.

The user is prompted for the number of elements
and the input validated. If the value is invalid,
the user is given a diagnostic and prompted for a
new value. A correct value is posted in PLD. The
parameter unique element is prompted for and
processed in the same manner.

The routine DBEDGR is called to obtain and process
the conversion, fcrmatting, validation routine
names and validation argument.

At this point of adding the key field or in update
mode, the rest of the parameters are ignored. in
update mode the changed information is posted to
the descriptor dataset by calling DBEDFL, and then
go save the command string. The use is prompted
if the field is to be indexed. If the answer is
no then go prompt the user for associated file
information, otherwise the user is prompted as to
which index file the field is to appear. If no
defining fieldname is entered, a new index file is
created for this field. Otherwise the field is
placed on the same index as that of the defining
field. In the CHANGE command, if the field was
already indexed on a different file, it must be
deleted from that index file before it is placed
on the new index file.

The user is prompted as to whether the index key
is to be in either internal or external form. If
no value is entered, internal is assumed. If the
value is external then the user is prompted for
and must enter the maximum length of the external
value,

The user is prompted if the index is to be
spanned. If no value is entered, it is assumed
not to be spanned. At this point, the index is
ready to be setup. If it is a new index a header
descriptor is allocated and setup for the index,
else the new information is posted to the
existing header.

The routine DBErGA is called to determine if the
field is to be placed on an associate file.

PAGE

The user is prompted if the field is to be on a
subfile, If not go prompt the user for a subfile
value as obtained, the subfile header is updated
accordingly,

The user is prompted for the defining base field
name if the field is to be a subfield. If no
value is entered, the field will not be a
subfield. If it is to be a subfield, the user is
prompted for an offset value. If none is entered,
a value of 0 is assumed. In case the defining
base field is either RECLEN or the anchor key
field the user is prompted for the particular
file on which this subfield is to be placed. The
user can specify the actual file name if known or
indicate the type of file on which the subfield is
to be placed. If ASSOCIATE or SUBFILE is
specified the user is prompted for a field
defining which asscciate file or which subfile.
the subfield information is posted in FLD.

At this point all of the parameters have been
entered, processed and the information posted. It
is now determined which file list the field is to
be placed and if not in the proper place already,
threaded onto the end of that file list.

If adding the anchor key field then the fields
FILEKEY, FREEFORM, and COMMENTS are setup on the
appropriate files and an index file is setup for
PREEFORM.

The command string is saved in the current
strategy and control is returned to the calling
routine.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

TERMNAL
D

SCRIPTOR

TAABLES

... .1/0 B o d

Figure i. I/0 Block diaram

DBEDAC1 DBEDAC2

INITIALIZE GET ANDINITIALIZE D PRCE
PROCESS
VALIDATION

__ ROUTINE

GET AND
'PROCESS
FIELDNAME --VALID

DBEDGF ?

[GET AND
PROCESS _ GET AND

FIELDTYPE GET AND PROCESS
PROCESS VALIDATION
ELEMENT . ARGUMENT
LENGTH

GET AND "_y
PROCESS ADDINGGET AND FALIGNMENT KEYPROCESS

ELEMENT
NUMBER

GET AND UPDATE FILEPROCESS GETSSDAE CHDGE
SFIRELAT UNIQUEELEMENTS

GET AND
PES DPROCESS

PROCESS
FIELD GET ROUTINE

LENGTH & ARGUMENT

DBEDGR
g eDG TINDEXED

ELEMrENTAL -2a T v

Figure 2a. Top level flowchart

Cx4E: PROCESS
GET AND ASSOCIATED
PROCESS PAREM
WHICH -DBEDGH
INDEX

GET AND GET AND
PROCESS PROCESS
INTERNAL SUBFILE
EXTERNAL

N N-
EXTERNAL S

SUBFILED

GET AND
PROCESS GET AND
EXTERNAL GET AND

LENGTH PROCESSLENGTH
WHICH
SUBFILE

GET AND
PROCESS
SPANNED

SETUP
INDEX

Figure 2b. Top level flowchart

SETUP
SUBFILE

FIELD

GET AND

GET AND

PROCESS
POST

SUBFIELD I

FILIELD

ADDING N
KEY

GET AND!
PROCESS
OFFSETUP SETUP

FREEFORM
COMENTS

GET AND
PROCESS
FILE

SAVE
CONMMD
STRING

GET AND
PROCESS
DEFINING
FIELD

EXIT

SETUP
SUBFIELD

H

Figure 2c. Top level flowchart

PAGE 245> 2,

TOPIC D.10 - DESCRIPTOR EDITIOR - ADDIIKE - REVAME COMHANDS

A. MODULE NAME

Program-ID - NDBEEAR
Module-ID - DBEDAR

B. ANALYST

Barry G. Hazlett
Neoterics, Inc,

C. MODULE FUNCTION

The ADDLIKE command creates a new field descriptor
exactly like an existing descriptor with a different
name, The RENAME command changers the name of an
existing descriptor.

D. EATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Imrut Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

ao Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

PAGE +9fr Z

4. Reference Tables

The following external tables are referenced by
NDBEDAR:

1. FIELD
2. FLD
3. FLD STRING
4. HDR
5. SECURITY
7. SUPER
8. SUPER STR
8. SUPER STR
9. VALID

10. X

A description of these tables can be found in the
dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The entry points are ADDLIKE command - DBEDAR1 and
RENAME command - DBEDAR2. Upon entry into either
command a flag is set indicating which command was
called. After which the two commands share common
code for parameter processing.

Routine DBEDGF is called to obtain a valid new
field name. To be valid the new field name must
be of alphanumeric of at most eight characters
long, must not already exist and must not be a
reserved field name.

Routine DBEDGF is called to obtain a valid
existing fieldname. This field must exist and
must not appear in the reserved fieldname list.

If in the RENAME command, then the name of the
specified existing field is changed to the
specified new field name and the field name change
is posted in the FIELD structure. At this point
the command string is stored in the current
strategy and then control is returned to the
calling routine.

If in the ADDLIKE command the existing field is
duplicated, the new fieldname posted in the copy.

PAGE 497 ;-o

The new fieldname is posted in the FIELD
structure. The ADELIKE ccmmand string is saved
in the current strategy, after which control is
returned to the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

r

I I5!i

-........ i ?
DBEDAR DESCRIPTOR

TABLES

.Figure . 10 BlOck DiarFigurel 1 /~ oi~aga; i
1-/0 Block Diagram, :-.....

DBEDARI DBEDAR2

S-ET RENAME SET RENAME- -
FLAG ON FLAG OFF GET OLD

FIELDNAME
DBEDGF

GET NE W
FIELDNAME

RENAME
DBEDGF ENAME

DUPLICATENGE

FIELD FIELDNAME

POST NEW
NAME POST FIELD

POST FIELD
EXIT

EXIT

Figure 2. Top Level Flowchart

PAGE 24e

TOPIC D.11 - DESCBIFTOR EDITOR - CBKPOINT COMMAND

A. MODULE NAME

Proqram-ID - NDBEDCP
Module-ID - DEEDCP

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C, MODULE FUNCTIONS

This command is used to save the descriptor tables as
they exist in memory in a SAM data set as that they may
be retrieved at a future time by use of the RESTORE
command and then continue to create the descriptors
from that point.

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a, Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c, Input Files

Not Applicable

3, Output Data Sets

a. Output Files

The output file is a SAM data set named
DESCRPCCKPOINT. Refer to the data set
specifications for a description of this data
set.

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

PAGE 4 - $

Not Applicable

4. Reference Tables

The following external tatles are referenced by
VDBEDCP:

1. FIELD
2. FLr
3. FLD STRING
4. HDR
5. HDR STRING
6. RECSEC STE
7. SECURITY STE
8. SUPER STR
9. VALID
10. X

The description of these tables is specifications
in the dataset of the DWB.

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into CHKFOINT, any previously existing
checkpoint dataset is erased by use of ASMERSE
routine. The data set record length is
dynamically determined by calculating the length
of that part of the X structure that must be
saved, the current length of the FIELD structure
and using the larger of the two values.

The data set CBKPOINI.DATASET is created and
initialized by use of the routine ASMDCB to
create the DCB for the data set, routine ASMFNDS
to initialize the JFCB, and routine ASHOPEN to
open the checkpcint data set.

The variable part of the X structure is put into
the data set by use of the ASNPUT routine, and
likewise the FIELD structure.

Each of the fields are saved through use of ASMPUT
routine by creating the following character
string: the FLDSTRING concatenated to SUPER_STR
if it is a superfield, concatenated to
SECURITY STR if there is field security on this
field, concatenated to VALIE.APGUMENT if the field

PAGE

has a validation argument.

Each of the headers are saved through use of
ASMPUT routine ty creating the following
character strinq, the HD~_STRING concatenated to
RECSEC STR if the file has record security.

The checkpoint dataset is closed by use of the
routine ASMCLOS, after which control is returned
to the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRIPTOR

TABLES

DBEDCP

INAL DESCRP.
CHfKPOINT

Figure 1. I/O Block diagram

DBEDCP 2

CLEANUp

ASiERSE

CREATE
CHECKPOINT
DATA SET

SAVE
FIELD
STRUCTURE

SAVE X
STRUCTURE

SAVE
FIELDS

SAVE
HEADERS

CLOSE
DATA SET

EXIT

Figure 2. Top level flowchart

PAGE 245-

TOPIC D.12 - DESCRIPTOR EDIIO - CREA SUB COMMAND

A. MODULE NAME

Program-ID - NDBEUCS
Module-ID - DBEDCS

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This routine is used to define and setup the necessary
field to create a subfile.

D. EATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3, Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

PAGE -20- 13

The following external tables are referenced by
NDBDCS:

1. FIELD
2. FLD
3. FLD_STRING
4. HDR
5. HDP STRING
6. X

A description of these tables can be found in the
dataset specifications of the DB.

B. PROCESSING RIQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into CREATSUB, module DBEDGF is called
to obtain a valid subfile control fieldname. To
be valid this field name must not be longer than
six characters long and be a valid alphanumeric
character string. The following field names are
then created. The subfile key field name, the
subfile parent key field name, and the subfile
record security field name. Of the above
mentioned four fieldnames, none must exist and
none must be a reserved field name for the entered
subfile control field name to be valid.

The user is prompted for the maximum number of
subfile records per anchor file record that may
be loaded into the subfile. The number must be
less than or equal to 1325. If the number is
valid, processing continues, else the user is
given a diagnostic and prompted for a new number.
This number then becomes the number of elements on
the subfile control field.

Routine DBEDGA is called to determine if the
subfile control field is to appear on an associate
file.

The subfile control field, the subfile key field,
and the subfile parent key field are now created
and posted with the proper values. The subfile
control field is placed in the varying field list
of either the anchor file or the appropriate
associated file. The subfile key field and the
parent field are placed in the fixed list of the

PAGE 2Yf1-

appropriate subfile.

The afore mentioned field names are placed in the
reserved field name list. The command string is
saved in the current strategy, after which control
is returned to the calling routine.

SCODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

. ... :. • .DESCRIPTOR
TABLES

F u 1 / l d g

Figure i. I/0 Block diagram

CREATE
ET FIELD FIELDS
AME
DBEDGF

A THREAD-
FIELDS

GET NUMBER
OF RECORDS

POST
FIELD

N RESERVED
VALID

V DIAGNOSTIC

GET
ASSOCIATED A
PARAMETERS
DBEDGA

PAGE L4 J7

TOPIC D.13 - DESCRIPTOR EDITOR - END COMMANDS

A. MODULE NAME

Program-ID - NDBEDDE
Module-ID - DBEDDE

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODHLE FUNCTION

This module is the entry point into the Descriptor
Editor. It prompts for and processes Descriptor Editor
commands and calls the appropriate command routine.
The END command is used to terminate Descriptor Editor
processing and return control to the maintainence
director.

D. DATA BEQUIREMENTS

1. I/O Plock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Imput Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-Outs

PAGE 4T

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDBEDDE:

1. FIELD
2. X
3. VERBTAE

A description of these tables is found in the
dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. lop Level Flowchart

See Figure 2

2. Narrative

Module DBEDIN is called to set up mode of
operation and all cf the tables necessary to the
running of the descriptor editor.

The user is prompted for his next Descriptor
Editor command. If the command is invalid as
determined by a search of the verb table, the user
is given a diagnostic and prompted for a command
string.

If the command is not ENE, then the appropriate
command is called by use of the CALL routine when
control is returned, the user is prompted for his
next command.

If the command is END then if the user has not
filed his corrections, additions, or changes, he
is prompted informing him such and asked if he
really wants to terminate the Descriptor Editor.
If the anser is no then the user is prompted for
his next Descriptor Editor command, else the
Descriptor Editor run is terminated.

At termination each field storage and each header
storage area is released. The FIELD and X
structures are then released. Control is then
returned to the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PAGE

PL/I with DBPL/I and TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRIPTOR-

_7 " ..'DBEDDE

TERMINAL TABLES

Figure 1. I/O Block diagram

INITIALIZE

DBEDIN

GET AND
PROCESS
COMMAND

END CALL
COMMAND COMMAND

NEED N A
FILE

USER WANT
TO QUIT?

QUIT)-# CLEANUP

EXIT

Figure 2. Top level flowchart

PAGE -fr

TOPIC D.14 - DESCRIPTOR EDITOR - DISFLAY INTERNAL COMMAND

A, MODULE NAME

Proqram-ID - NDBEDDI
Module-ID - DBEDDI

B. ANALYST

Barry G. Hazlett
Neoterics, - Inc.

C. MODULE FUNCTION

This module is a debugging tool used to display the
various external descriptor tables (DESCTAB), by their
internal name, field descriptors by their field name
and header descriptors by their file ids.

DISPLAYI DISTYPE=<I,F,H>,DISNAME=structure-name

vhere:

DISTYPE is the type of variable to be displayed I for
internal, F for field descriptor and H for file or
header descriptor.

DISNAME is the name of the variable to be displayed.
For internal mode the fcllcwinq structures may be
displayed.

ERPORFILE
FIELD
FLD
HDR
RECSEC
SECURITY
SUPER
VALID
FIE COMMENTS
FLD FREEFCRM
FLE RS
FLD SUBCNTRL
FLE SUBID
FLD SUBPK
HD_ ASSOC
HDR INDEX
INIT FLD
INIT HDR
INIT RECSEC
INIT SECURITY
INITSUPER

PAGE 2+7

IO FLD
10 HDR
IO RECSEC
IO SECURITY
PIFEX
RESERVEC
IS
X

For field mode the name of the field to be
displayed is supplied. For header mode the file
suffix id is entered.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

1. FIELD
2. FLD
3. HDR

PAGE 44-8-27L

4. RECSEC
5. SECURITY
6. SUPER
7. VALID
8. X

A description of these tatles can be found in the
dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

I. Top level Flowchart

See Figure 2

2. Narrative

Upon entry into NDBEDDI the user is prompted for
the display type. If the display type value is
not 'I', 'F', or 'HI the user is given a
diagnostic and prompted for a new value.

Depending on the display type the user is prompted
for either an internal structure name, a field
name, or a header id. If the internal structure
name is not contained in the list of names in the
module function section, or the field does not
exist or the file does not exist, the user is
given a diagnostic and prompted for a new display
name value.

When displaying an internal name, a label variable
is used, one label for each structure that may be
displayed. At each of these pieces of code, a
generalized display subroutine is called to
display the desired type of structure passing the
address of the particular structure to be
displayed. This is done for all structures except
for the structures PLEX, ERRORFILE, and XS. A
word about these display procedures later. The
information from the structures PLEX and
ERROPFILE is setup and displayed. The display of
the X structure is a service of calls to the
different display procedures, one for each minor
structure of X to be displayed.

When displaying a field descriptor, a call to the
procedure DIS FLD is called to display the proper
FLD structure. If the field is a superfield, has
a validation argument, or has field security,
calls are made to the routines DIS SUPER,
DIS_VALID, and DIS SECURITY to display the proper
structures. This is done to display all of the

PAGE39-M

information associated with the field.

When display a header descriptor, a call is made
to DISHDR to display the proper HDR structure and
if the file has record security, a call is made to
DIS RECSEC to display the appropriate record
security information.

After the information has been displayed, control
is returned to the callinq routine.

For displaying the actual desired data several
internal procedures are set up, one for each type
of structure. They are DISFIELD, DISFLD,
DIS_HDR, DIS_RECSEC, DIS_RESERVEE, DIS SECURITY,
DIS SUPER, DIS VAlID, and DISXS. These
procedures build the output information in a work
area in predefined formats. The information is
output to the terminal thru use of the TS PROMPT
facility. The output consists of a title line
followed by the data usually displayed beneath the
title line.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I and DBPI/I statements.

2. Suggestions and Techniques

Not Applicable

•~ ..

TEF~aNAL -fDBEDDI
DESCRIPTOR

TABLES'

Figure 1/0 Block diagram

DBEDDI

GET DISPLAY
TYPE

VALID
SDIAGNOSTIC A

-7- .
INTERNAL
DISPLAY FIELD

DISPLAY HEADER
C DISPLAY

GET INTERNAL
NAME GET FIELD

NAME GET HEADER
ID

VALID
E VALID Y

F VALID

DIAGNOSTIC
DIAGNOSTIC

- C

D

Figure 2a. Top level flowchart

F -G

DISPLAY
INTERNAL DISPLAY DISPLAY

STRUCTURE FIELD HEADER
DESCRIPTOR DESCRIPTO

EXIT EXIT EXIT EXIT

Figure 2b. Top level flowchart

PAGE 2-2

TOPIC D.15 - DESCRIPTOR EDITOR - DELETE FIEID COMMAND

A. MODULE NAME

Program-ID - NDBEEDL
Nodule-ID - DBEDDL

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This module is used tc delete a previously defined
field descriptor.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See figure 1

2. Input Data Sets

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Net Applicable

4. Reference Tables

The following external tables are referenced by
NDBEDDL.

1. FIELD
2. FLD
3. HDR
4. SUPER
5. X

PAGE -2

A description of these tables is found in the
dataset specifications of the DWB.

E. PROCESSING FEQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Routine DBEDGF is called to obtain a valid
fieldname. To be valid, the field must exist. If
the field name appears in the reserved list, then
it must be a subfile contrcl field and there must
be no other fields on this subfile to be valid.

A further check is made to determine if the field
to be deleted is a component of any superfields or
is the defining base field for any subfields. If
so, the user is told of all superfields and all
subfields that make use of this field. The user
is then prompted for a new field name value. If
here then the field can te deleted.

At this point, the internal delete entry point is
defined. If the field name to be deleted does not
exist, control is returned to the calling routine.
Otherwise a pcinter is set to the field to be
deleted. At this point delete forms common
code.

If the field appears on an associate or subfile or
is indexed, then the appropriate file descriptor
counts are updated. If the associated file or
index file is depleted of fields, the file
headers are deleted, and the file ids made
available for reassignment.

At this point the field is deleted by the internal
delete field routine. If the deleted field is a
subfile control field, the subfile key field and
the parent key field are also deleted.

The next field in the list to be deleted is now
processed in the afore mentioned manner. After
all of the fields have been processed, the command
string is saved in the current strategy, if it was
the delete command that was called. Control is
then returned to the calling routine.

The internal procedure DELETE FIELD is used to
release the work areas containing the field

PAGE e2l'0Vq

information, and to post the deleted field list if
this field exists on the disc stcrage version of
the descriptor file.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2. Suqggestions and Techniques

Not Applicable

T I
MED DL •

•- i DES CRIPTOR,
TABLES

-" . 1 :

Figure -1- 1/0 Block diagram

DBEDLD

COMMAN N
MODE

DELETE FIELD

CALL
FIELDNAME-

-

DBEDGF

DELETE
FLD

CALL
DELETE. FIEL

POST
FIELD

MORE
FIELDS A

EXIT

EXIT

Figure 2. Top level flowchart

PAGE 4 24

TOPIC D.16 - DESCPIPTOR EDITOR - DISPLAY FIEID COMMAND

A. MODULE NAME

Program-ID - NDBEDDP
Module-ID - DBEDDP

B. ANALYST

Earry G. Hazlett
Neoterics, Inc.

C. NODULE FUNCTION

This routine is used to display the information
defining a field.

D. DATA PEQUIREMENTS

1. I/O Elock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input File

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

The various pieces of information are
displayed on the screen one item per line
preceded by a descriptive title. Refer to
the dataset specifications for a description
of this display format.

c. Formatted Print-Outs

PAGE

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDBEDDP:

1. FIELD
2. FLD
3, HDR
4. SECURITY
5. SUPER
6. VALID
,7. X

A description of these tables is found in the
dataset specifications of the DWB.

,E PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

At the command entry point the paging information
structure is allocated and initialized and routine
DBEDGF is called to obtain the fieldname to be
displayed.

At the paging entry point, the paging information
is set to point to the proper page to be displayed
and then join common code with the command entry
point.

At the start of the common code the number of the
next item to be displayed is retrieved from the
paging information and a branch is taken to the
appropriate code to obtain the next piece of field
information. If there is no information for this
item number, the next item is pointed to and
processed as above. After the line of information
is built, it is placed in the screen buffer.

If there is more room in the buffer, the next item
is pointed to and processed as above. Once the
screen is full and there is more information to be
output in the forward direction, a paging entry
point is setup and next page information is posted
in the paqinq information structure. The buffer
is then flashed to the screen after which control
is returned to the calling routine.

PAGE 4,R- 2-1

F. CODING SPECIFICATIONS

1. Source language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

- DBEDDP DESCRzET(
TABLES..

SCREEN

Figure i. I/0 Block Diagram

DBEDDPl

INITIALIZE

GET
FIELDNAME

DBEDGFF

BUILD
DATA

MORE N
DATA

SETUP FOR
PAGING

POST PAGE
INFORMATION

DISPLAY.
DATA

EXIT

Figure 2a. Top Level Flowchart

DBEDDP2

SETUP

Figure 2b. Top Level Flowchart

PAGE 24,d

TOTC D.17 - DESC*IPTCP EDITOR - Initialization

A. MODULE NAME

Program-ID - NVBEDIN
Module-ID - DBEDIN

B. ANALYST

tarry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This module performs all of the initialization
necessary for the running of the Descriptor Editor. It
is called by the Descriptor Editor director.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

There are no input files for the Descriptor
Editor when in the CREATE mode and the user
is creating a new set of descriptors.
However, when in UPDATE mode, or when the
user is continuing the creation of a
previously entered set of descriptors, -the
previously created descriptor file is used as
an input file. The description of this file
is found in the dataset specifications of the
DWE.

3. Output Data Sets

a. Output Files

Not Applicable

PAGE 3

b. On Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4, Reference Tables

The following external tables are referenced by
NDBEDIN:

1. FIELD

2. FLD

3. HDF

4. RECSEC

5. SECURITY

6., SUPER

7. VALID

8. X

A description of these tables is found in the
dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2, Narrative

The descriptor file indicated is opened for input
to determine if the file exists. If the file
exists and in CREATE mode, routine DBEDID1 is
called to load the descriptors. If in UPDATE mode
and the file does not exist, the user is given a
diagnostic and prompted for a new file name.

The verb table is allocated and initialized to the
proper verb table copy. The routine DBUSER is
called to setup any additional user defined
commands.

If in CREATE mode and no file exists, the user is

PAGE 4-35

prompted for the anchor key field. The routine
DEEDAC1 is called to process and setup the anchor
key field.

The user is prompted for the descriptor mode. If
the response is valid, flags are set indicating
the mode, and a pointer is set to the appropriate
verb table copy. If the mode is invalid, the user
is given a diagnostic and prompted for a new mode
value.

The X structure is allocated and initialized. The
initialization consists of setting the various
pointers in X to NULL. he FIELD structure is
allocated and its pcinters set to NULL.

If RESTORE mode is indicated, DBEDPT is called to
restore the checkpointed descriptor. If no
restore errors cccurred, the go setup the verb
table. If there were restore errors, or CREATE or
UPDATE mode were indicated, the file name is
retrieved from the MFCB.

Control is then returned to the calling routine.

,. CODING SPECIFICATIONS

1. Source Language

PL/I with DBPL/I and TSPL/I statements

2. Suggestions and Techniques

Not Applicable

DESCRIPTOR
NL DBEDCM TABLES

SCREEN

Figure 1 - I/O Block Diagram

CM4

DBEDDA

POINT TO
FILE

-1
POST
HEADER
DESCRIPTOR

POST
DELETE
FIELD

POST
FIELD
DESCRIPTOR

RETURN

CM5

DBEDSS

POINT TO

FILE

POST
HEADER
ESCRIPTION

POST
DELETE
FIELD

POST
FIELD
DESCRIPTOR

RETURN

CM6

DBEDDX CM6

POINT TO
FILE

POST
HEADER
DESCRIPTOR

POST
DELETE
FIELD

POST
FIELD
DESCRIPTOR

RETURN

i .

8o1

DBEDEF

RAISE
LIMIT

ALLOCATE
NEW FIELD

MOVE
OLD FIELD

INFORMATION

FREE
OLD FIELD

EXIT .

Figure 2. Top Level Flowchart

J-!

- 4

DBEDTA

CM8

POINT TO
FIRST
FIELD

FREE
VALID

FREE
SECURITY

FREE
SUPER

FREE
FLD

MORE Y POINT TO
RNEXTFIELDS NEXT

FIELD

POINT TO A
FIRST
HEADER

FREE
RECSEC

FREE
HDR

POINT TO
H NEXT HEADER

RETURN
B

DBEDGA

CM9
A

GET ASSOCIA ED

N
SSOCIATE RETURN
VALID N SETUP

VALID

? DIAGNOSTIC

Y

B

~---??

CREATE
NEW FILE

POST

INFORMATION

RETUIRM

DBEDGFM
CM10

GET FIELDNAME

N SETUP.
VALID /DIAGNOSTIC

POST
IELDNAME A

RETURN

DBEDGR CMII-

GET ROUTIN

~ oDIAGNOSTIC

.POST A
ROUTINE
NAME

ALL N POINT TO
NAMES NEXT

ENTRE ROUTINE.

B y

GET -
ARGUMENT

iN

VN SETUPVALID
SDIAGNOSTIC

POST B
ARGUMENT -

RETURN

DBEDPG1

GET DIRECTION

VALID N SETUP
SDIAGNOSTIC

1

POST
DIRECTION

CALL ROUTINE

CALL

RETURN

CM13

DBEDPG2

MORE
INFO

ALLOW USER
TO PAGE

POST
PAGING

INFORMATION

FLUSH

RETURN

PAGE 43ie- 3 -

TOPIC D.18 - DESCRIPTOR EDITOR - FIELES COMMAND

A. MODULE NAME

Program-ID - NDBEDFD
Module-ID - E1DFE

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

In CREATE mode the FIELDS command outputs the names of
the fields thus far created. In UPDATE mode the
descriptor descriptor names are displayed.

D. EATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Irput Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

The fieldnames are placed on the screen, the
number of names per line determined by
dividing the screen width by 20.

c. Formatted Print-Outs

PAGE 4-314

Not Applicable

4, Reference Tables

The following external tables are referenced by
NDBEDFD:

1. FIELD
2. X

A description of these tables can be found in the
dataset specificatics of the DWB.

E. fROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

If in CREATE mode, a pointer is set to the FIELD
structure, otherwise in UPEATE mode the pointer
is set to an internal list containing the
descriptor descriptor field names.

At the paging entry the proper page number is set
up in the paging information structure.

At this point, the code Becomes ccmmon for both
the command and paging entry points. The number
of the next field name to be displayed is obtained
from the paging information structure. Two
control loops are set up, one to build every line
to fill the screen and the cther to fill each line
of the screen.

If there is more informaticn to be displayed, the
paging entry point is set up. The paging
information structure is posted, the buffer is
flushed to the screen and control is then
returned to the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

DBEDFD DESCRIPTOR
Eigure ITABLES

SCREEN

Figure 1. I/O Block Diagram

DBEDFD2

INITIALIZE SETUP

MOD UPDATE

CREATE

BUILD SCREEN BUILD SCREEN
FROM FIELD FROM

INTERNAL LIST

MORE N
DATA

SETUP FOR
PAGING

POST PAGING
INFORMATION

OUTPUT
DATA

EXIT

Figure 2. Top Level Flowchart

PAGE 24

TOPIC D.19 - DESCRIPTOR EDITOR - FILE CCMMAND

A. MODULE NAME

Program-ID - NDBECFI
Module-ID - DBEDFI

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This module is used to place those additions and/or
changes from the descriptors in core to the descriptor
file.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

The descriptor file is a region ISAM dataset
containing all the information necessary to
completely define the data base.

b. On-Line Terminal Displays

Not Applicable

C. Formatted Print-Outs

PAGE 24-3-

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDBEDFI:

1. FIELD
2. FLD
3. FLD STRING
4. HDP
5. HDR STRING
6. RECSEC
7. SECURITY
8. SUPER
9. VALID
10. X

A description of these tables can be found in the
dataset specifications of the DWB.

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entering FILE command, if just one descriptor
record is to be updated, the appropriate file
identified is setup, the file opened and the
descriptor record is updated after which control
is returned to the calling routine. Otherwise all
the descriptor information is to be filed to the
descriptor file. The user is prompted for the
parameter DESCOK and the value saved for posting
each header record. If the input value is in
error the user is given a diagnostic and prompted
for a new value.

If the anchor key field needs to te deleted, it is
deleted from the anchor and all associate files.
The delete file list is then processed deleting
the header, RECLEN key field and when applicable
the parent key field of all files listed.

For outputting descriptor information, the files
are processed in the following order: anchor, all
associate files, then all sutfiles. If the file
does not exist on disc the RECLEN field is
written out. If it is a new region and the file
is either the anchor file or an associate file the

PAGE 244

anchor key field must be written out for a new
subfile the subfile key field and parent key field
are written out. If these or any other fields
already exist on the file then only the changes if
any, to these fields are written out. Record
security if any is then written out.

As these fields are output the field position
value for each field in maintained and updated.
This value is then placed in the FLDPOSIT position
for each field.

The packed bit fields for the file are then
processed in the order in which they appear in
the list. They are packed four to a byte and the
field position ,and field length indicating which
byte and where in the byte respectfully the field
can be found. After all packed bits fields are
processed, the fixed fields for the file are
processed shipping over the key field, parent key
field and record security field where applicable.
Then all varying fields are processed in order.

If it is an anchor or associate file all
descriptors if any are set up and processed,
Then the header record is setup and processed and
the file closed. The next file is processed in
this manner until the anchor file, all associate
files and all subfiles are processed.

The index files are processed next. If it is a
new file the RECLEN field is written out. Each
field to be indexed on this file is located, setup
and written out. The anchor or key field on the
appropiate subfile key field is setup and written
out. If the index file already exists then only
those changes applicable are written out to the
dataset. Each index file is processed in this
manner until all index files have been
processed.

After all the fields have been processed the
various external structures are marked indicating
that the descriptor data is on the dataset. The
command string is saved in the current strategy
and control is returned to the calling routine.

., CODING SPECIFICATIONS

1. Source Language

PL/I with DEPL/I and TSPL/I statements.

PAGE

2. Suggestions and Tecbniques

Not Applicable

dar

XT DESCRIPTOR

ER2 NAL ~ I----- DBEDF1 I -fDSil~O
TAB~LES

ESCRIPT

FILE

Figure i. I/0 Block Diagram

L L Y T
FILE ALDESCRIPTOR A GET DESCOK POINT TO SETUP ANDNEXT FILE OUTPUT

FIELDS

NSETUP VALIDFILE ID ? OPEN FILE SETUP AND
OUTPUT
HEADER

DELETE
ANCHOR SETUP ANDOPEN KEY FIELDS OUTPUT MOREFILE

FIELDS INDICES

DELETE
FIELDS SETUOUTPUT OUTPUT SAVE

DESCRIPTOR HEADEROMMAND
RECORD . STRING

DELETE
REGIONS Y

EXIT MORE
EILES B EXIT

B

POINT TO
NEXT INDEX
FILE

DIAGNOSTIC

r 2 D

Figure 2. Top Level Flowchart

PAGE 44-9

TOPIC D.20 - DESCRIPTOR EDITOR - SUPERFIEID COMMAND

A. MODULE NAME

Program-ID - NDBEDSU
Module-ID - DBEDSU

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C, MODULE FUNCTION

The SUPERFLD commands allow the user to define a
superfield descriptor.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a, Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

PAGE 2r ,:

The following external tables are referenced by
NDBEDSU:

1. FIELD
2. FLE
3. FLD STRING
4. HDR
5. SUPER
6. VALID
7. X

A description of these tables can be found in the
dataset specifications of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into SUPEPFLD, routine DBEDGF is called
to obtain a new fieldname.

A FID structure is allocated and initialized.
Routine rBEDGR is called to obtain any conversion,
formatting and validation routines and validation
argument.

The user is prompted for a list of field names
which are to be the superfield components. Each
component is processed in the following manner.
If no internal external indicator is present,
external form is assumed. If an indicator is
present, it is seperated from the field name. If
the indicator is invalid, the user is given a
diagnostic and prompted for a new component value.
To be valid the component fieldname must be the
name of an existingq field. In addition, for a
field having more than one component, the
component list is limited to at most one
multielement field and all if any subfile
components must be from the same subfile. If the
component fieldname is invalid, the user is given
a diagnostic and prompted for a new component
value.

After all the ccmponents are entered, and
processed, they are saved in a SUPER structure and
the pointer stored in the FLD structure.

Next it is determined on which descriptor file the

PAGE *+2-

superfield is to be placed. If all the components
are from one file, then the superfield descriptor
is placed in the descriptor region. If the
components are all from one associate file and one
subfile and the subfile is defined off of that
associate file, the superfied descriptor is placed
in that associate descriptor region. All other
superfield descriptors are placed in the anchor
descriptor file.

The SUPERFLD command string is saved in the
current strategy and control is then returned to
the calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PI/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

GET
FIELDNAME

DBEDGF

SAVE
FIELDNAME

UPDAT Y
MODE ,

MORE N
FIELDS ' B

<Y

GET SECURITY
CODE

VAL D N

DIAGNOSTIC

SAVE B
SECURITY
CODE

MORE Y
CODES B

POST
SECURITY
CODES

EXIT

Figure 2b. Top Level Flowchart

PAGE 2s5s-321

TOEC D.21 - DESCRIPTOR EDITOP - LOAD DESCRIPTORS MODULE

A. MODULE NAME

Program-ID - NDBEDLD
Module-ID - EBEDLE

B. ANALYST

Barry G. Bazlett
Neoterics, Inc.

C. MODULE FUNCTION

In create mode the load module loads and sets up all
field and header descriptor information. In update
mode the load module loads the desired descriptor
record, including file descriptors and dummy descriptor
records.

D. DATA REQUIREMENTS

1. I/O Flock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b,. Punched Card Input Files

Not Applicable

c, Input Files

The descriptor file is a region ISAM dataset
containing all the information necessary to
completely define the data base.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

PAGE 5933 0

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDBEDLD:

1. FIELD
2. FLD
3. FLD STRING
4. HDR
5. HDR STRING
6. RECSEC
7. SECURITY
8. SECURITYSTR
9. SUPER
10. VALID
11. X

A description of these tables can be found in the
dataset specificaticns of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into DBEELD if all descriptors are to
be loaded, the anchor file is first pointed to,
otherwise the appropriate file identifier is set
up. If call from REVIEW command branch to
retrieve the appropriate header on field
descriptor fields as the file has been opened and
the appropriate descriptor read into core.

In update mode any fields which have been loaded
and still exist in work areas are released. This
is a control so that no more than one field
descriptor can be loaded at any one time. Note:
this is not true for header descriptor.

The next descriptor region is opened starting with
the anchor region and the descriptor header record
read in. The header fields are obtained and all
bit switches converted to an alphabetic character.
A HDR structure is allocated and the header
information saved therein. If the file has record
security, the security codes obtained, placed in a

PAGE -96

RECSEC structure and hocked up to the HDR
structure.

If in update mode, the desired field descriptor
record is read in, otherwise the next sequential
field descriptor is read in. If not in review
mode, it must be determined if the field is a
dummy descriptor. If it is then a list of file
ids is built eventually containing all of the
descriptor regions on the file once all of the
field descriptors on the anchor file have been
processed. This list is built from non-blank
entries in the ASSOCFIL, INVFILE and SUBFILE
descriptor fields. If the field is a dummy, and
in update mode, the correct file is pointed to and
a branch goes to open the file and read the
desired field descriptor. In create mode, this
record is skipped and the next descriptor record
in the region is read.

If this field descriptor is saved, all of the
field descriptor bit field values are translated
to an alphabetic character.

The field validation argument, if any, is obtained
and saved. If the field is a superfield, the
component values are obtained and saved.
Likewise, if the field has security, the security
codes are obtained and saved.

A FLD structure is allocated and the field
information saved therein. The field name and
pointer are posted in the next available slot in
the FIELD structure, and if in create mode, the
FLD structure is chained to the end of the proper
file list.

When the anchor region is finished. A list of all
existing descriptor regions is complete. The next
descriptor region in that list is selected and
loaded as described.

In review mode once the desired descriptor record
from the desired descriptor region has been
processed, as the correct non dummy field
descriptor has been loaded in update mode, control
is returned to the calling routine.

In create mode a search is made through all file
lists to locate all subfields. For each
subfield, the defining base field is located and
the base field name and offset are posted in the
subfield FLD structure.

PAGE -Nts332

The fields within the file lists are ordered by
their field positions within each file list with
all subfields and superfields appearing at the end
of the crdered lists. Control is then returned to
the calling routine.

•F CODING SPECIFICATIONS

1. Source Language

PL/I with DBPL/I statements.

2. Suggestions and Techniques

Not Applicable

ESCRIPT
BEL FILE DESCRIPT(

TABLES

Figure 1. I-/O Block Dia ram

Figure i. I/0 Block Diagram

DBEDLD

SETUP
FOR
LOADING

CLEANUP

REVIEj HDR
MODE OR

FL
FLD

D
ET TO
NCHOR FILE

Figure 2a. Top Level Flowchart

OPEN FILE
AND

RED HDR PROCESS AND
SAVE FIELD

B INFORMATION

GET, PRCESS
AND SAVE

ADR FIELDS LOADING y
JUST

SONE
EXIT

GET FIELD ANCHOR
INFORMATION REGION N

REVIEW y SETUP
MODE E LIST OF

V L FILES

MORE
DE T N REGIONS y POINT TO

E NEXTREGIO

SETUP :
SAVE FILE READ ONLY A

INFORMATION BASE FIELDS

D ORDER FIELDS

FILE LISTS

Figure 2b Top Level Flowchart

PAGE 6-- ,357

TOEtC D.22 - DESCRIPTOR EDITOR - MOVE COMMAND

A. MODULE NAME

Program-ID - NDBEDMO
Module-IC - EDEDMO

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

The MOVE command permits the user to reorder fields
vithin any field list.

D. DATA REQUIREMENTS

1. I/O BLOCK DIAGRAM

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

PAGE 22 33

The following external tables are referenced by
NDBEDMO:

1. FLD
2. HDR
3. X

A description of these tables can be found in the
dataset specificaticns of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The user is prompted for the new position field
name. If the entered field name does not exist,
the user is given a diagnostic and prompted for a
new fieldname. The new position field name cannot
be, the anchor key field if the anchor file has
record security, the sutfile parent key field if
the subfile has record security or the subfile key
field, or the RECLEN field. If any of these
conditions are met, the user is given a diagnostic
and reprompted for a new position fieldname. A
superfield has no field position. If a subfield
is specified, the defining base field is located
and used as the new position fieldname. All other
fields are unacceptable.

The user is prompted for the field to be moved.
To be valid, the field must exist and must not be
a reserved fieldname, must appear in the same
field list as the new position field name and
must not be a superfield or a subfield. If the
field is invalid, the user is given a diagnostic
and reprompted for the field to be moved.

The field to be moved is deccupled from the list
by resetting the appropriate forward and backward
pointers. It is then threaded into its new
position by setting the appropriate forward and
backward pointers.

The command string is saved in the current
strategy and then control is returned to the
calling routine.

F. CODING SPECIFICATIONS

PAGE 21

1. Source language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

•

r

TERMIAL DBDIMODESCRIPTOR

......
• t • TABLES

Figure 1 /0 Block diagram

DBEDmPO
3L

GET NEW POSI-
TION FIELDNAMi

VALID N

DIAGNOSTIC

GET FEILD TOMOVED

VALID N

DIAGNOSTIC

DECOUPLE B

OLD FIELD

THREAD
FIELD

Figure 2 .Top level flowchart

PAGE f66 3/I

TOPIC D.23 - DESCRIPTOR EDITOR - PATCH COMMAND

A. HODULE NAME

Program-ID - NDBEDPA
Module-ID - DBEDPA

B, ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

The Patch command permits the user to patch the value
in any descriptor record in any description region in
the descriptcr file. The record to be patched must be
identified by use of the REVIEW command.

D., DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card InPut Files

Not Applicable

c. Input Files

Not Applicable

3. Output rata Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

PAGE -24342

4. Reference Tables

The following external tables are referenced by
NDBEDPA:

1. FLD
2. HDF
3. RECSEC
4. SECURITY
5. SUPER
6. VALID
7. X

A description of these tables can be found in the
dataset specificaticns of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The REVIEW command indicates in X that a REVIEW
has been done and it is alright to patch, REVIEW
also indicates whether the field to be patched is
a field or header descriptor. If a REVIEW has not
been done the user is given a diagnostic and
control is returned to the calling routine.

The user is prompted for his patch in the form
"keyword=test". The keyword is checked to see if
valid. If not, the patch is ignored, the user
given a diagnostic and reprompted for the patch.
If the name is valid, a branch is taken to the
piece of coded which actually posts the
appropriate field.

In each of the sections of code, one for each
descriptor field name, a resonableness check is
made on the patch text, to assure that the data
will be accepted by the validation routines when
posting the information to the descriptor file.

Refer to the Descriptor Editor Users Guide for the
acceptable range and form of the patch texts.

The user may enter a parenthesesed list of
patches.

After all the patches have been posted in the
descriptor table work areas, they must then be

PAGE ilf3

posted to the descriptor data set. The routine
DBEDFD3 is called to post the appropriate field
descriptor, or the routine DEEDFI is called to
post the apprcpriate header descriptor. The
routine called depends on whether the user is
patching a field descriptor or a header
descriptor. Control is then returned to the
calling routine.

F. CODING SPECIFICATIONS

1. Source language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

Figur 1 110k L

Blc diar a

;- L• •

Fiur 1. I/0 Block. d ga

EEL B
OR HEADER

HEADER

FIELD IEL
HEADER

OINT TO FIEL PO NT TO
DESCRIPTOR HEADER FIELD
FIELD N'AMES DESCRIPTOR

FIELD NAMES

LE PATCE FILE PATCHE
GET NEXT DBEDFD3

PATCH DBEFI4

EL N

NA E ~DIAGNOSTIC A

ONABL N

DIAGNOSTIC A

-PATCHES A-p l

PAGE 2-i 34-4

TOPIC D.24 - DESCRIPTOR EDITOR - PRINT COMMAND

A, MODULE NAME

Program-ID - NDBErPR
Module-ID -DEDPR

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

The PRINT command gives the user a formatted printout
of the descriptor information as it exists in core at
the time the print is issued.

D. EATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c, Input Files

Not Applicable

3. Output Eata Sets

a. Output Files

The output data from NEBEDPR is placed in the
SAN data set IIST,DESC from where it is
printed on the high speed printer by an OS
Job. For the details of the data set refer
to the dataset specifications.

b. On-Line Terminal Displays

Not Applicable

PAGE *7- q

c. Formatted Print-Outs

The informaticn stored in LIST. DESC is
printed using column one of each record as a
carriage contrcl.

4. Reference Tables

The following external tables are referenced by
NDBEDPR:

1. FIE LD
2. FLD
3. HDR
4. BECSEC
5. SECURITY
6. SUPER
7. VALID
8. X

A descripticn of these tables can be found,
dataset specifications in the of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The data set LIST,DESC is created using the
assembler routines. A DCB is created for the
output file by the routine ASMDCB, the JFCB set up
by the routine ASMFNDS, and the dataset opened by
the routine ASMOPEN.

The title lines for the data base name are output
by the routine ASrPUT, The data base name is
output followed by two trailing title lines.

The title lines fcr the field descriptors are
output. The lines of field information for each
field are built and output.

After the field informaticn is processed, the
title lines for the header descriptor information
are written out. The lines of header information
for each descriptor region are built and written
out.

The LIST.DESC dataset is closed by calling the
routine ASMCLOS.

PAGE --3-1

F. CODING SPECIFICATIONS

1. Source language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRIPTOR

TABLES

DBEDPR

LIST

DESC

PRINTER
LISTING

Figure 1. I/O Block diagram

DBEDPR

CREATE OUTPUT
LIST.DESC(+i) FILE

HEADER

OPEN OUTPUT
LIST.DESC(O) FILE

DESCRIPTORS

OUT DATA-
PLEX NAME CLOSE
AND HEADER FILE

OUTPUT
FIELD

HEADER PRINT
LIST.DESC (0)

OUTPUT
FIELDS

EXIT.

Figure 2. Top level flowchart

PAGE '2 357

TOPIC D.25 - DESCRIPTOR EDITOR - RECCFD SECURITY COMMAND

A. MODULE NAME

Program-ID - NDBEERS
Module-ID - DBERDRS

B. ANALYST

Earry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This command is used to create and define record
security for any data base file except for indicies.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

Not Applicable

c. Formatted Print-Outs

Not Applicable

4. Reference Tables

PAGE 271-3

The following external tables are referenced by
NDBEDRS:

1. FIELD
2. FLD
3. FLD STRING
4. MDR
5. RECSEC
6. X

A description of these tatles can be found in the
dataset specificaticns of the DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Routine DBEtGF is called to obtain a fieldname
used to define on which file record security is to
be placed. If in update mode and the header
record is not loaded, DBEDLE is called to load the
header. If there is no record security currently
defined for the file in UPDATE mode, the user is
given a diagnostic and control is returned to the
calling routine.

The user is prompted for a record security code.
The add-delete indicator is removed from the code
and validated. If it is invalid, the security
code is rejected, the user is given a diagnostic
and reprompted for the security coded. If no
indicator is entered, "ADD" is assumed.

The security code is removed from the parameter.
If this is not an alphanumeric character string,
the security parameter is rejected, the user is
given a diagnostic and reprompted for the
security code.

The security mask to be valid must be a two digit
hexadecimal character string. If it is invalid,
the security parameter is rejected, the user is
given a diagnostic and reprompted for the
security parameter.

Once the security parameter is validated, it is
saved in an internal work area. The user may
enter a list of security parameters as a list in
parentheses. Each security parameter is obtained

PAGE .2,.-35-3

from the user and processed as above.

If record security has been previously defined for
the file, a pointer is set up to the file header
and record security information. Otherwise a
record security field is created and placed in
the appropriate position in the fixed field list
of the file. A record security save area is
allocated and initialized.

A control loop is set up to process each entered
security code. The existing security list if any
is searched for the entered security code. If the
security code exists and the new code is to be
added, the two security masks are logically OR'ed
together and the result posted in record security
structure. If the code is to be deleted, the two
security mask are logically exclusively OR'ed and
the result placed in the record security
structure. If the security code is not in the
existing list and it is to be added, it is placed
at the end of the existing list. If the code to
be deleted and it does not appear in the list, it
is ignored. Each security code is processed in
this manner.

After all security code have been processed and
the record security list is empty, the area is
released and the record security field deleted
from the file.

If in UPDATE routine DBEDFI is called to post the
record security tc the descriptor file. The
command string is saved in the current strategy
and then control is returned to the calling
module.

F, CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I statements.

2, Suggestions and Techninques

Not Applicable

TER

•

.

•

S' DESCRIPTO
TALES

Figure 1. I/O Block diagram

DBEDRS

GET
FIELDNAME

DBEDGF

D

EADE Y
LOADED

?ECURIT
EXIST

LOAD
HEADER

DBEDLD3
SETUP

SECURITY

RECOR N
SECURITY ' DIAGNOSTIC POST

XIS SECURITY
T tCODES

EXIT

ET SECURITY
CODE

EXIT

VALID u
? DIAGNOSTIC,

SAVE
SECURITY

CODE

MORE
CODES C

Figure 2. Top level flowchart

PAGE 2-- 554

TOPICS D.26 - DESCRIPTOR EDITOR - RESTORE CCMMAND

A. MODULE NAME

Program-ID - NDBEDBT
Module-ID - DEEDRT

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This command is used to restore the descriptor tables
from a SAM data set to memory, so that the user may
continue to create and/or modify the descriptors from
their point of existence at the time the checkpoint was
issued.

D. DATA REQUIREmENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The input file is a SAM data set named
DESCRP.CHKPOINT. Refer to the dataset
specifications for a description of this data
set.

3. Output Data Sets

a. Output Files

Not Applicable

b. On Line Terminal Displays

Not Applicable

PAGE 262- ~

co Formatted Print-Outs

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDBEDRT:

1. FIELD
2. FLD
3. FLD STRING
4. HDR
5. HDF STRING
6. ~ECSEC STR
7. SECURITY STR
8. SUPER STR
9. VALID
10. X

The description of these tables is in the
specifications of the dataset DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

Upon entry into NDEFDRT a DCB is set up for the
dataset EESCRP.CHKPOINT by calling the routine
ASMDCB. ASMFNDS is called to setup the JFCB. Any
and all existing field descriptors and file
descriptors are released and then the FIELD
structure itself is released.

ASNOPEN is called to open the dataset. That part
of the X structure which was saved is read in over
top of the same part of the existing X strucure.

The FIELD structure is allocated next, Note that
the variable defining the size of FIELD structure
is in that part of X which has just been restored.
The FIELD structure is read in overlaying the just
allocated existing FIELD structure.

A field descriptor is read into a work area. A
FLD structure is allocated on the field
information moved into it. If the FLD has field
security, a validation argument, or is a super
field, the appropriate structures are allocated,

PAGE ae-31

the information moved into them, and the pointers
in FLD setup accordingly. The changed flags in
FLD are setup so that all of the field descriptor
information will be forced out to disc when the
FILE command is issued. Each field descriptor is
processed in this manner.

A file descriptor is read into a work area. An
HDR structure is allocated and the header
information moved into it. If the file has record
security, a RECSEC structure is allocated, the
information moved into it, and the pointer posted
into the HDR structure. The HDP Fointer is posted
into the proper slct in X.HEAD_TAB. Each header
descriptor is processed in this manner.

The dataset DESCBP.CHKPOINT is then closed and
control is returned to the calling program.

. CODING SPECIFICATIONS

1. Source language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

DESCRP.
CHKPOINT

DBEDRT

DESCRIPTOR
TABLES

EMN.TERMINAL

Figure 1. I/O Block diagram

DBEDRT

INITIALIZE

OPEN
DES CRP.
CHKPOINT

READX

READ FIELD

READ FIELD
DESCRIPTORS

RAD FILE
DESCRIPTORS

CLOSE
DESCRPp
CHKPOINT

EXIT

Figure 2.Figure 2. Top level flowchart

6lOca~

PAGE US6 :51

TOFIC D.27 - DESCBIPTOR EDITOR - REVEW COMMAND

A. MODULE NAME

Program-ID - NDBEDRV
Module-ID - DBEDRV

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

This command is used to present the descriptor
information to the user of any descriptor record in any
descriptor region in the descriptor file. Reviev
points to the record to be patched by means of the
PATCH command.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input File

Not Applicable

c. Input files

The data base descriptor file is a ISAM file
maintained by DBPAC, containing the
information defining and detailing the
information contained in the data base.

3, Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

The various pieces of information contained

PAGE -2*L

in the descriptor record are displayed on the
screen preceeded by the descriptor descriptor
field name. All fixed fields are displayed
within a 20 character string. The number of
items per line for fixed field items is
determined by dividing the screen width by
20. The varying elements are display one per
line, with continuation lines if necessary.

c. Formatted Print-Outs

Not Applicable

4. References

The following external tatles are referenced by
NDBEDRV:

1. FLD
2. HDR
3. BECSEC
4. SECURITY
5. SUPER
6. VALID
7. X

A description of these tables is found in the
dataset specifications of the dataset DWB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2, Narrative

At the command entry point the paging information
structure is allocated and initialized. The user
is prompted for the descriptor file a region jid
that he wishes to review from. If the region id
is invalid, the user is given a diagnostic and
prompted for a new region id.

The user is prompted for the name of the
descriptor record he wishes to review from the
descriptor region. If the descriptor name is
invalid, the user is given a diagnostic and
prompted for a new descriptor name. If the
descriptor exists the routine DBEDLD is called to
load the descriptor data. If a loading error
occured, the user is given a diagnostic and
prompted for a new descriptor value.

PAGE ,;m

The paging information structure is setup to point
to the first page of information to be displayed.
At which point the command entry and paging entry
join in common code.

At the paging entrv point, the paging information
is set to point to the proper page to be displayed
and then join common code with the command entry
point.

At the start of the common code, the number of the
next item to be displayed is retrieved from the
paging information and a branch is taken to the
approprate code to obtain the next piece of
descriptor information. Seperate pieces of code
exist for each field descriptor and file
descriptor descriptor fields. After the piece of
information is built, it is inserted in the output
line. If there is sufficient room in the output
line for more data, the next item of information
is obtained as above. If the line is full, it is
put into the TS screen buffer.

If there are more lines of screen available, they
are built and processed as above. This continues
until either the screen buffer is full or all of
the information has been exhausted. If the
screen is full and there is more information to
output in the forward direction, a paging entry
point is setup and the next page of information is
posted in the paqing information. The buffer is
then flashed to the screen.

The X structure is posted as the descripter region
and field nawe of the record REVIEW'ed so that the
user may use the PATCH command if he desires,
after which control is then returned to the
calling routine.

F. CODING SPECIFICATIONS

1. Source Language

PL/I with TSPL/I and DBPL/I statements.

2. Suggestions and Techniques

Not Applicable

3(L

DESCRIP-
TOR FILE

TERguNAL
.1. / B kBEDRV DES CRIPTOR

TABLES

SCREEN
DISPLAY

Figure 0 I/OBlock diagram

DBEDRV

D

INITIALIZE

PAGING

INFORATION POINT TO
NEXT ITEM

GET FILE ID

HEADER HEADER
OR

V N . .~ FIELD-

DIAGNOSTIC

SETUP FIELD SETUP FILE
DESCRIPTOR DESCRIPTOR

Fiur ITEM
GET

FIELDNAME

C PUT DATA IN
OUTPUT LINE

DIAGNOSTIC

LOAD B F
FIELD

DBEDLD3

LOADING Y
ERROR C

POINT TO

FIRST PAGE

Figure 2a. Top level flowchart

DBEDRV2 ROOM
IN LINE

POINT TO OR Y
PAGE LINES

D PUT LINE
INTO SCREED

MORE N
NFORMAT M

SETUP
PAGING
ENTRY

OUTPUT
DATA TO

SCREEN

EXIT

Figure 2b. Top level flowchart

PAGE - L4

TOPIC D.28 - DESCRIPTOR EDITOR - SAVE STRATEGY COMMAND

A. MODULE NAME

Program-ID - NDBEDSS
Module-ID - EBEDSS

B. ANALYST

Barry G. Hazlett
Neoterics, Inc.

C. MODULE FUNCTION

The command is used to create and save in the strategy
data set, a list of Descriptor Editcr commands which
when executed at any future time will create a set of
descriptors exactly like those that exist in core at
the time the SAVSTRT command is issued.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2, Input Data Sets

a. Parameter Cards

Not Applicable

b,. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-Outs

PAGE 290

Not Applicable

4. Reference Tables

The following external tables are referenced by
NDBEPSS:

1. FLD
2. HDR
3. RECSEC
4. SECURITY
5. SUPER
6. VALID
7. X

A description of these tables can be found in the
dataset specificaticns of the DWB.

. PROCESSING REQUIREMENTS

1. Top level Flowchart

See Fiqure 2

2. Narrative

Upon entry into SAVSTRT, tte user is prompted for
the strategy name in which the Descriptor Editor
commands are to be saved. If the name is not of
the proper form or a strategy by that name
already exists, the user is given a diagnostic and
prompted for a new strategy name.,

Once a valid strategy name is obtained, the
MAINTAIN and EDIT command strings are saved in
the strategy. This initializes the strategy. The
internal subroutine SAVE FLD is called to save
the ADD command to create the anchor file key
field.

A control loop is set up to process each of the 20
possible files in the order of anchor file,
associate file and then suhfiles. with each
existing file each field list is processed in the
order of packed bit fields, fixed fields, and then
varying fields. Each field list is processed from
the start of the list to the end of the list.

The SAVE FLD command is called for each field to
create and save the appropriate command string.

The fields COMMENTS, FREEFORM, the sutfile key
field, and the subfile parent key fields are

PAGE 45

skipped as they are created thru the adding of the
anchor key field or the CREATSUB command. The
record security field is skipped if encountered
and processed after all other fields on the file
have been processed. All the fields on all of the
files are processed in the manner and order.

If the RECLEN field has field security, the
SAVE FS is called to build and save the FLDSEC
command.

After all of the fields and files have been
processed, the FILE and END commands are saved in
the strategy, after which time control is returned
to the calling routine.

In the SAVE _FLD internal procedure, if the field
is a subfile control field the CREATSUB command
string is built else of the field is a superfield
the SUPERFLD command string is built, othervise
the ADP command string is built. The appropriate
command string is saved thru use of the routine
TSPUTG.

The internal entry SAVEIS is defined at this
point to save the field security if any. This
code is also part of the SAVE_FLD procedure. If
the field has field security defined on it, a
FLDSEC command strinq is built or saved in the
strategy through use of the routine TSPUTG.
Control is then returned to the calling point in
SAVSTRT.

F. CODING SPECIFICATIONS

1. Source language

PL/I with TSPL/I statements.

2. Suggestions and Techniques

Not Applicable

TERITNAL '.5 DBEDSS DESCRIpTOR

TABLES

STRATEG
DATA SET

Figure 1. I/O Block diagram

DBEDSS

A C

GT STRATEGY
NAME POINT TO

NEXT MORE
FILE FILES B

VAL ID N

DIAGNOSTIC
FIELDS FIELD N

SSAVE FLD ECURIT ON D
CLE

INITIALIZE

RECORD N j SAVE FIELD
SECURITY C ECURTTy

SAVE FS
SAVE ANCHOR
KEY FIELD

CREATE
SAVE FLD AND SAVE .DAND SAVE

RECSEC
COMMA .--D

EXIT

B

Figure 2a. Top level flowchart

SAVE FLD

BFI Y BUILD AND

FIELD CREATSUB E

BUILD AND
SUPERFIELD SAVE

SUPERFLD E

COICOMUND

AV g BUILD AND

AVE ASAVE

SFLDSEC
1COLIND

EEXIT

Figure 2b. Top level flowchart

IE BID N

PAGE 4e-31.3

TOIEC E.1 - TERMINAL SUPPORT - PREPROCESSOR

A. MODULE NAME

Terminal Support PL/I Preprocessor
Program-ID - TS
Module-ID - TS

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

TS analyzes terminal input/output PL/I language
extension statements and produces statements acceptable
to the PL/I compiler. These statements call the
terminal support module allowing the program to
communicate with the user's SYSIN and SYSOUT or,
pending TSS support, an on-line display station. The
user's SYSIN and SYSOUT are a terminal if the task is
conversational, or data sets, if non-conversational.
Diagnostic messages are generated for errors which can
he detected by TSPL/I during preprocessing.

D. DATA REQUIREM1NTS

1. I/O flock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

The Job Control cards needed to invoke the
PL/I compiler for OS are described in the IBM
PL/I Programmer's Guide.

b. Punched Card Input Files

1. TS Text

The TS text deck is all text for
insertion into the source program
followinq a "% INCLUDE LISRMAC(TS);,
statement in the source program. This
text consists of the source statements
of the TS preprocessor function and any
PL/I statements to be inserted at the "

PAGE 49+ p

INCLUDE IISRMAC(,S);" statement in the
source prcgram. The TS text is coded as
specified in this report, formatted
according to PL/I source language
standards, and catalogued in a data set
for compile time use by all programs
using TS.

2. Source reck

The source deck is any PL/I source
program using TS statements to interface
with the user's SYSIN and SYSOUT or any
on-line display station. The statement
formats and their use are described in
the TSPL/I User's Manual (Section II,
Topic E.2 of the LWB).

c. Input Files

The TS text statements are catalogued as a
member of a partitioned direct access data
set for retrieval by the IBM PL/I
precompiler. This data set is accessed via
ddname LISFMAC.

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The object module consists of the relocatable
machine instructions and constants generated
by the PL/I compiler for the source program.
It is stored in a partitioned data set. This
data set is that one defined in the compiler
job step with the DDNAME SYSLMOD. The module
is linked by the OS linkage editor.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

1. Precompiler Listings

Two precompiler listings are produced:

(a) A source listing before

PAGE --T 3 75

precompilation and

(b) Any precompiler diagnostics (i.e.,
errors in the use of preprocessor PL/I,
not TS error messages). The IBM PL/I
Programmer's Guide explains the listing
format,

2. Compiler Listings

The compiler listinas produced include
an intermediate source listing (between
precompiling and compiling) and any
compiler diagnostics. Any errors
detected by the precompiler function
will generate PL/I comments in the
intermediate source listing. Serious TS
PL/I errors may result in compiler
diagnostics also. The IBM PL/I
Programmer's Guide explains the listing
formats.

d. Punched Card Output Files

Not Applicable

4, Reference Tables

a. TC - terminal control block

b. TSPL/I - diagnostic ccaments.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Top Level

The mainline PL/I source proaram is required
to have a "% INCLUDE IISPMAC(TS);" statement
once in the program before all TS
preprocessor function references. This
statement directs the PL/I precompiler to
take text frcm member TS of the library
accessed via ddname LISRMAC and incorporate
it into the source program. (Refer to the TS
block diagram in Section D.1 of this
write-up).

PAGE -30a-_7(a

The TS function receives one argument from a
preprocessor function reference; i.e., a
variable length character string. It is TS's
function to scan and parse this input string
to determine if it is in the correct format
and then to generate a string called the
"generated text." This string consists of
valid PL/I statements and comments for
communication with the terminal support
modules.

The processing of TSPL/TI is closely analogous
to the processing of DBPL/I described in
Section IV, Topic A of the DWE and is only
summarized here. The TS text declares and
activates the TS preprocessor function.
Argument initialization, . finding a
subargument, passing labels and comments
through, and finding the statement keyword to
select the specific statement routine are all
done analogously to the DBPL/I preprocessor
function. Diagnostic comments are generated
for any errors detected. (See Section III,
Topic E.1 of the DWB.) There are no files to
be analyzed.

In all programs a declaration of the entry
point to the terminal support modules is
generated and a declaration of TC - the
Terminal Ccntrol block (See Section III,
Topic E,2 of the DWE.)

b. Specific Statement Routines

Each specific statement routine examines the
statement from left to right until the
semicolon clause is found. The keywords are
verified for correct spelling and order. If
any error is detected, a diagnostic comment
is generated and the statement abandoned by
control being transferred to the
inter-statement point. Following successful
analysis, each specific statement routine
generates PL/I statements for communication
with the terminal support modules and loops
back to the inter-statement point.

The ON PAGE statement routine generates the
following statement:

TC.PAGINGENTRY=expression;

Where "expression" is taken from the CALL

PAGE 43O471

clause of the TS ON PAGE statement.

The ENTRY statement routine generates the
followinq statements:

TS_ENTR Y PETURN POINTT NT ENTRY LABEL_n
GO TO TS ENTRY CODING;
TSENTRYIABEL n:

Where "n" is a numeric value assigned
sequentially to each ENTRY statement as it
is encountered.

The ENABLE statement routine generates the
following statements:

DCL TS ENTRY RETURN POINT LABEL;
TSENTRY BETURPOCINT=TSENTRY_LABEL_ 1
TS ENTRY CODING:
ON CONDITION(END)

GO TO TS EXIT CODING;
ON CONDITION (ATTN);
TC.FUNCTICN='ENTSY';
CALL TSCNTRL(TC);
GO TO TSENTRY RETURNPOINT;
TS EXIT_CODING;
RETURN;
TSENTRY LABEL_ 1:

Lines 4-6 and 10-11 of the above text are
only generated when the user specifies the
appropriate option on the ENABLE statement.

The TS logic is such that the ENABLE
statement, if it appears, must appear before
the first ENTRY statement, and in fact,
implies an ENTRY statement. Likewise, the
first ENTRY statement implies a default
ENABLE statement, if none are present.

The PROMPT statement routine generates the
following statements:

TC.FUNCTICN='PRCOMT-e';
TC. PROMPT.MESSAGE_KEY=expression;
TC. PROMPT.KEYWORD=value;
CALL TSPRMTe(TC,variable, list);

Where "expressicn" is taken from the MSG
clause of the statement, "value" is taken
from the KEYWORD clause (if present),
"variable" is taken from the INTO clause (if
present) and "list" is taken from the USING

PAGE 4-5

clause (if present). The value of "e" is
generated according to the following table:

1. INTO clause - none
"e"=M

2. KEYWORD clause - none
"e"=C

3. KEYWORD clause - yes
-e,=D

The READ statement routine generates the
following statements:

TC.FUNCTICN=' READ';
CALL TSPEAE (TC,variable):

Where "variable" is taken from the INTO
clause of the TS READ statement.

The WRITE statement routine generates the
following statements:

TC.FUNCTION=' WRITE' ;
CALL TSWRITE(TC,variable):

Where "variable" is taken from the FROM
clause of the IS WRITE statement.

The PUT statement routine generates the
following statements:

TC. FUNCTICN='PUT';
TC.OUTPUT.POSITICN='a';
TC.OUTPUT.DIRECTION='b';
CALL TSPUT(TC,variable,value) ;

Where "variable" is taken from the FROM
clause of the TS PUT statement and "value" is
taken from the TAG clause (if present). The
value for "a" will be generated according to
the following table:

1. position clause - none
"a"=0

2. position clause -LINE
na"=0

3. position clause - PAGE
"a"=1

PAGE Sfr

The value for "b" will be generated according
to the following table:

1. direction clause - none
"b"=C

2. direction clause - FORWARD
"b"=0

3. direction clause - BACKWARD
"b"= 1

The FLUSH statement routine generates the
following statements:

TC.FUNCTICN='FLUSH';
CALL TSFLUSH(TC);

The FINISH routine sets a precompiler
variable to indicate that a FINISH statement
has been processed and to prevent the
processing of any further TSPL/I statements.
A diagnostic comment indicating the number of
TSPL/I errors is generated. If there have
been any errors detected, the following
statement will be generated causing an
IEM05121 PL/I error:

DCL TS DUMMY VARIABLE LABEL
INIT(TSEBRS_nn);

Where "nn" is the number of TSPL/I errors
detected.

All statements and comments generated will be
aligned as seventy-one byte strings, for ease
of analysis.

P. CODING SPECIFICATIONS

I. Source Language

TS is written in IEM PL/I preprocessor
statements.

2. Suggestions and Techniques

Not Applicable.

ss

I;-.-

• - :TZi~E~

-

,-- ._ .

. :. 1 1.

Figure 1. 1/10 Block d§4'agram.

:• J

DBEDSU

GET - -FIELDNAME
F IELDNAT4E

DBEDGF

GET
S-ROUTINES

DBEDGR

GET I
COMPONENT

VALID - N

MORE Y
FIELDS B

SETUP -

SUPERFIELD

THREAD IN
LIST

Figure 2. Top level flowchart

PAGE 1

TOEC E.2 - TERBINAL SUPPORT SUPERVISOR

A. MODULE NAME

Terminal Support - Terminal Suprort Supervisor
Program-ID - NTSUPER
Module-ID - TSUPER
Entry Points - TSATIN, TSCNTRL, TSFLUSH, TSGETKY,
TSPRRTC, TSPRMTD, TSPBMTM, TSPUT, TSREAD, TSWRITE

B. ANALYST

Frank Reed
Neoterics, Inc.

C. MODULE FUNCTIONS

1. Organization Chart

See Figure 1

2. Overview

TSUPER is the primary vehicle of communications
between the NASIS monitor (MTT or stand-alone)
and the NASIS PL/I data Ease programs. Among the
functions TSUPER performs are:

a. Issues I/O requests from data base programs.
This includes command, data and message
prompts and ordinary read and write
reguests.

b. Initializes the Terminal Control Block (TC)
for each PL/I program. Supplies information
about the current display area dimensions and
resets all bit switches to zero.

c. Controls asynchronous interrupt processing.
Detects APOFF, END and GO conditions and
insures that asynchronous activities do not
interfere with ncrmal processing.

d. Maintains a push-down stack of message key
references to support the EXPLAIN facility.

e. Scans and passes user input strings for
commands and data. Information entered at
the terminal is interpreted and passed to
reauesting programs in useful segments. The
TC Block is utilized to enhance interprogram
communication.

PAGE

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 2

2. Input Data Sets

a. Parameter Cards

Not applicable

b. Punched Card Input Files

Not applicable

c. Input Files

1. NASIS Message file

d. On-line Terminal Entries

All responses to command and data prompts by
NASIS programs pass through TSUPER. See the
command System User's Guide for a detailed
discussion of the format and syntactic rules
for these respcnses.

3, Output Data Sets

a. Output Files

Not applicable

b. On-line Terminal Displays

All output from NASIS data base proorams
passes through TSUPER, See the TSPUT and
TSPROMPT sections of this TOPIC for a
complete discussion of terminal output
characteristics,

c. Formatted Print-Outs

Not applicable

d. Punched Card Output Files

Not applicable

4. Reference Tables

a. External Tables

PAGE, ir"57

1. TSCTL
2. USERTAB
3. TSCREEN
4. MTTUTAB

b. Internal Tables

1. EXPLIST

An area in which a push-down list of
message keys is saved.

E. PROCESSING REQUIREMENTS

1. Top Level Flowcharts

a. MAINLINE: See Figure 3

b. Entry Points:

1. TSATIN - See Figure 4

2. TSCNTPL - See Figure 5

3. TSFLUSH - See Figure 6

4. TSGETKY - See Figure 7

5. TSPRMTC - See Figure 8

6. TSPRMTD - See Figure 8

7. TSPRMTM - See Figure 9

8. TSPUT - See Figure 10

9. TSWRITE - See Figure 11

c. Program Subroutines:

1. GETPR - See Figure 13

2. DELPR - See Figure 14

3. GETSYN and GETDFALT - See Figure 15

4. PULINEND - See Figure 16

5. SDGIVITD and SDGIVITC - See Figure 17

6. SDPASS and SDYSNCHK - See Figure 18

7. RESETBUF - See Figure 19

PAGE -3 5

8. SDSTRIP and STRIP - See Figure 20

9. PRKEYSAV - See Figure 21

10. IMCHECK - See Figure 22

11. SIGNAL and SIGNALC - See Figure 23

12. SETLDAB - See Figure 24

13. GETMLF - See Figure 25

14. MOVE - See Figure 26

15. PROMPT - See Figure 28

16. EXIT - See Figure 29

2. Narrative

a. MAINLINE

All calls to TSUPER entry points pass through
the MAINLINE code. The purpose of this code
is to insure that each user has the correct
work areas, to initialize base registers and
to restrict TS usage during APOFF and
ATTENTION processing.

Execution proceeds by calling the PLI service
routine IHESADA to obtain a Dynamic Storage
Area (DSA). Next, registers are initialized
and useful pointers are saved in unique
locations. The PLI Pseudo Register Vector
(PFV) draws special attention since it is not
maintained in register 12, as is the norm for
other programs.

Using the PRV, MAINLINE determines if a copy
of the TS PSECT has been allocated for this
user. If not, the routine GETPR is invoked
to obtain one. On return, data lifted from
MTTUTAB is utilized to compute the user's
logical and physical device dimensions and
this information is saved for future
reference.

The one-byte switch ICSV is checked to find
out which entry point was entered. If entry
was through TSATIN, ccntrol goes directly to
the interrupt processing code. For any other
entry, the contents of the user's TC Block
(passed as a parameter) is moved to the DSA

PAGE 3+3-

for easy addressability. If an APOFF has
been requested by the user, only calls to
TSPRNTM and TSCNTRL are allowed to execute
normally, all cthers being short circuited to
the routine which signals an END condition.
If not in APOFF mode, control is passed to
the routine specified at entry.

b. Entry Points

1. TSATIN

This entry point is called by module
TSATTN whenever it determines that a
user attentions should be processed. If
the user has previously entered APOFF,
the attention is ignored. If an
immediate command is currently
processing, condition END is signaled
which terminates the ccmmand. If this
is the second successive attention and
processing of the first is sufficiently
advanced, condition END is signaled;
otherwise, this interrupt is ignored.

For all first attentions not mentioned
above, condition ATTN is signaled in the
most recently activated ON CONDITION
block. On return, a second copy of the
user PSECT is allocated, the string
input buffer is initialized to null
input and the FL/I routine DBATTN is
called to issue the ''-ATTN:'' prompt.

On return from DBATTN, all user requests
have been satisfied and the user is
ready to continue. After closing the
duplicate DCBs for the message files,
the duplicate user PSECT is released.
If the user entered END or APOFF in
response to ''-ATTN:'', then pointers
are set tc cause execution to resume at
the PL/I signal routine for END
condition; otherwise, execution resumes
at the point of interrupt.

2. TSCNTRL

TSCNTRI is called by any program which
anticipates calling TSUPER for
input-output service. Its function is
to initialize the TC Block for use and
pass the user's terminal dimensions.

PAGE -t@

Terminal dimensions are obtained from
the user's profile by repetitive calls
to ISGDEF. If no defaults are
specified, the necessary information is
taken from MTTUTAB.

Control is returned to the caller
through the EXIT routine.

3. TSFLUSH

TSFLUSH is the display output routine
for terminal support. It is normally
called after consecutive calls to TSPUT
have caused an output buffer to be
filled. If a buffer has overflowed and
AUTOWRITE is indicated, this routine is
called from TSPUT and a flag is set to
cause the "MORE:' message to replace
the next Frompt.

The name of the paging entry for the
program doing a PUT or FLUSH should
always be in the TC Block as it is saved
by TSFLUSP lust prior to the write.
Data is output one line at a time for
typewriters and in a block for screens.
The most current display is saved in the
external controlled storage named
TSCREEN.

4. TSGETKY

This entry point is called with three
parameters: (1) TC Block, (2) message
key or list reference or list reference
pointer in the range -7 < pointer < 0 ,
(3) varying length data area to hold the
message text read from the file. On
entry, pointers to these parameters are
placed in registers and the type of
request is determined (either key or
pointer).

If it is a pointer, the key is obtained
from EXPLIST (a push-down stack of
keys). If the user wants just the key,
control is returned to the caller.
Otherwise, and if the second parameter
is a key, the message file is searched
for the Key.

If the key is not found, error flags are

PAGE -

set and control returned to the caller.
Else, the text cf the message is read
into the user's area and the message key
is reset to point to the next record of
the file, if any, and control is
returned to the caller.

5. TSPRMTC

This is the entry point called by any
data base program to request a command
from the user., On entry, an- -internal
buffer is checked for the presence of a
previously entered command. If one is
there, it is returned to the caller as
satisfying the prompt. If the buffer is
empty, a message key passed as a calling
parameter is used to access a message
file to obtain the text of the message
which describes the context of the
prompt to the user. This message is
displayed in the prompt area of the
user's I/O device and the terminal is
opened for input.

The response to this prompt must be a
command. It may be the one requested by
the calling program, in which case it is
passed along. Or, alternatively, it may
be any of the ''immediate'' commands
which cause one of the immediate command
processors to be invoked. After all
activities associated with the immediate
command are completed, the execution
cycle beginning on entry to TSPRMTC is
repeated until a satisfactory response
is returned to the caller or until APOFF
or END processing is initiated.

Consult the Command System User's Guide
for details of ccmmand syntax.

6. TSPRMTD

This entry point is called by a data
base program wishing to obtain
user-entered data. On entry, the same
internal buffer that holds commands is
checked for a parameter string that may
have been entered with a command. If
data is there, it is parsed out of the
string (in accordance with the syntactic
rules outlined in the Command System

PAGE

User's Guide) and returned to the
calling program. If the buffer is empty
or the next item in it is a command, a
message key passed as a calling
parameter is used to access a message
file to obtain the text of the message
which will explain to the user what data
is requested. The message is displayed
in the prompt area of the user's I/O
device and the terminal is opened for
input.

The response to this prompt may be data
or any of the immediate commands. If it
is data, it is parsed as above and
returned to the user. The Terminal
Control Block serves as a center for
communicating information about the data
between TSPPMTD and its caller.

If the response is an immediate command,
this command and its associated
parameters are treated separately from
any user input intended for a data base
program. When processing of the
immediate command is complete, the cycle
beginning on entry to TSPRMTD is
repeated until a satisfactory response
is received or until APOFF or END
processing is initialed.

Consult the Command System User's Guide
for the details of parameter syntax.

7. TSPRMTM

This entry point is called to display a
message from the Message file on the
user's terminal. No reply is asked for.
Auxiliary subroutine entry points are
called frcm various locations in TSUPER
to perform prompting tasks.

The message filter MSGLEVEL in the
user's prcfile determines whether or not
informational (I-level) messages are
displayed. Warning (W-level) messages
are always transmitted.

The message ID filter MSGIDS specifies
insertion of the message key between the
message prefix and the text. MSGIDS=Y
reguests display of message keys.

PAGE -3VjO7

MSGIDS=N implies no keys.

If the last output to the display area
left residual data undisplayed, the
''MORE'' message is substituted for any
command or data prompt message. The key
of every message (except explanations)
is placed in the EXPLIST area for
reference by the EXPLAIN command.

8. TSPUT

TSPUT may be called one or more times by
data base programs to format data
(passed as a parameter) in a buffer for
output. The data consists of a string
of characters to be displayed on the
user's terminal and an optional tag
field which is appended to the beginning
of the string. Formatting consists of
manipulating the data so that it appears
in a consistent and logical pattern on
the screen.

On entry, TSPUT initializes pointers and
work areas based on whether a restart,
continuation or backwards put is
indicated. After insuring there is
sufficient room in the buffer to insert
new data, a subroutine is called to move
the tag and data string to the output
buffer. This step is repeated until all
data is in the tuffer or the buffer is
filled. An attempt is made to
terminate lines tetween words and at
punctuation.

On buffer overflow, if the caller does
not want overflowed records inserted,
all pointers are reset and control is
returned to the caller. If partial
records are inserted, control characters
are appended, a TC Block variable is set
to indicate the number of characters
taken and the AUTOWRITE switch is
checked. If it is on, control passes to
the FLUSH routine, otherwise control is
returned to the caller.

If all data is inserted with no
overflow, the trailing position of the
record is padded with blanks (to fill
out a screen line) and control is

PACE -+41

returned to the caller.

9. TSWRITE

This routine is called to flush the
contents of the external storage named
TSCREEN. After locating the area,
control is passed to TLUSH, which
outputs the data and returns control to
the caller.

c. Subroutines

1. GETPR

This routine calls the PL/I controlled
storage allocation routine ''IHESADD''
to obtain space into which the master
PSECT may be copied. The caller's
registers are saved in an area common to
the copy routine so after the area is
obtained a branch is taken to MOVECOPY
and from there control is returned to
the caller.

2. DELPR

This routine simply deallocates the
external controlled storage allocated by
GETPR. The ZI/I service routine
''IBESAFF'' is called to perform this
function.

On return, register 12 is set to point
to the next area in the chain and
control is returned to the caller.

3. GETSYN and GETDFAIT

These two subroutines primarily the same
code, the differences being in the
lengths of the parameter list used in
the eventual call to an external program
and the v-con which is posted in
register 15 and points to the program
which is called. GETSYN calls TSGSYN to
obtain a synonym for a term. GETDFALT
calls TSGEEF to obtain a default value
for a parameter. On return from the
respective calls, the length of the
returned data is checked. If nothing
came back, the data pointers are reset
to point to the data used as a calling

parameter.

4, PUIINEND

This subroutine is called by TSPUT to
insert the proper end-control characters
on each line of display output as it is
moved into the output buffer. Screen
lines are padded with blanks to fill out
the line. Typevriter lines are
terminated with an interpretive hex
15.

5. GIVITD and GIVITC

These two subroutines are called by the
promoting routine to pass data to the
user. If the prompt processing is in
skip mode or the call was inadvertently
done before an item-was found, the pass
is not done. Otherwise SDPASS is called
to move the data to the user's area.

On return, the passed data is excised
from the input buffer. If it came from
a parenthesized list, the list flag is
set in the terminal Control Block and
control is returned to the user.

6. SDPASS

SDPASS compares the length of the data
or command passed from the input string
with the receive area. If the item will
fit the area, it is moved, otherwise a
syntax error is noted and error
processing is begun.

7. SDSYNCHK

This routine is called to check for
certain syntax errors. If an error is
detected, contrcl is transferred to
SYNNER to initiate an error control
sequence. Otherwise, control is
returned to the point of call.

8. RESETBUF

Preparing a buffer for input and
initializing all flags associated with
input parsinq is performed here.

PAGE 42f5t3

9. SDSTRIP and STRIP

SDSTRIP is called to delete leading and
trailing quotes and leading and trailing
blanks from an item passed as input to a
calling program. If only blanks are to
be deleted, entry is at STRIP.

10. PRKEYSAV

Inserts the key of a prompting message
into a- push-dvan list of message keys
for reference by the EXPLAIN command.

11. IMCHECK

Whenever the user enters an immediate
command, it is discovered by this
subroutine. Comparing the entered
command against a table of valid
immediate commands, a "hit'' leads to
either signalling ''END'' or calling an
external prcgram to initiate processing.
On return, the prompt routine is
informed of the occurrences and the
prompting cycle begins again.

12. SIGNAL and SIGNALC

Entry at SIGNlI causes preparations to
call the PL/I service routine IHEERRD.
Control then falls through to SIGNALC,
which calls a pre-indicated routine and,
on return, itself returns.

13. SETLDEA

This routine opens and initializes the
DCB for the prompt message Library:
NASIS.!MESSAGES. Also, it issues a SETL
to find a particular message key in the
file. If the Key is not found in
NASIS.MESSAGES a substitute message is
written which indicates the message was
not found.

14. GETMLF

GETMLF is the sister routine of SETLDBA.
Its function is to read the text of a
message record pointed to by a message
key. Each record read is checked for
the presence of a minus sign (-) or plus

PAGE 21 k

sign (+) as its last character.

If there is a minus sign, the next
record is read and appended to the
first. If the last is a plus sign, the
truncation bit in the TC Block is set to
one(1) and control is returned to the
caller.

15. MOVE

All extended data relocations are
performed by this rcutine. In addition
it is also used to blank-fill a data
area and copy from one area to
another.

16. PROMPT

On entry, if the user is in RESTART or
RERUN mode the next record of input is
obtained from the strategy dataset named
in the external control block USERTAB,
Otherwise pointers and constants are set
in the I/O control block and MTT is
called to do an I/D.

On return from ETT, the return code in
register 15 is checked. If there was an
error, attention interrupt or
continuation the I/O is retried.
Otherwise, the data is moved to a work
area and control is returned to the
caller.

17. EXIT

Returning to any program calling an
TSUPER entry point is accomplished by
passing through this code. The caller's
TC Block is updated by moving our copy
of it back into the caller's area. The
PRY is restored in register 12 and
control is returned by calling the PL/I
service routine THESAFA which releases
our Dynamic Storage Area (DSA) and
restores the callers registers.

F. CODING SPECIFICATIONS

1. Source Language

OS/360 Assembler Language.

PAGE

2. Suggestions and Techniques

Not Applicable

MONITOR MTTWREAD MTTREAD MTTWRITE

MTTKA MTTKB

TSATTN

TSATIN TSPROMPT TSREAD TSWRITE

DBATTN TSCNTRL TSFLUSH TSPUT

TSGETKY

IMMEDIATE
CONDITION COMMANDS
END

CONDITION I DATA BASE
ATTENTION PROGRAMS

Figure 1. Terminal Support Organization Chart
Cj

USER'S
TERMINAL

MONITOR

RTSUPER

LISRMLF

DATA BASE
PROGRAMS

Figure 2. I/O Block Diagram

PAGE a&

TOPIC E.3 - PLI-ASSEMBLER LINKAGE MCDULE

A. MODULE NAME

Program-ID - NDBPLINK
Module-ID - DBPLINK

B. ANALYST

T. C. Moser
Neoterics, Inc.

C. MODULE FUNCTION

This module completes the linkage between a PL/I
program and an assembler subroutine. It does so in
such a way that the assembler routine may in turn call
a PL/I subroutine and yet maintain the continuity of
control necessary for proper PL/I linkage and
communication. Another aspect of this linkage method
is that it makes the module reentrant and recursive.

D. DATA REQUIREMENTS

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 1

2. Narrative

Upon entry, the program initializes the variables
it needs from the parameter list passed by the
calling module. This data is used to obtain from
PL/I library routine IHESADA a dynamic storage
area (DSA) large enough to contain the register
save area and a copy of the calling routine's
pseudo PSECT.

Once this has been done, the program copies the
calling programs pseudo PSECT to the DSA,chains
the DSA into the pseudo register vector (PRV) and
posts the DSA address in register 13. The program
then initializes all of the base registers
required.

Before exiting the program restores the remaining
registers from the calling programs caller's
savearea. It then chains the DSA into the

PAGE 35t39q

savearea chain and returns to the caller.

f CODING SPECIFICATIONS

1. Source language

The module is written using the OS Assembler
language.

2. Suggestions and Techniques

Extreme care must be taken to ensure the fact that
this program is completely reentrant and
recursive. All operations should be performed in
registers, or in the DSA obtained from PL/I.

DBPLINK

INITIALIZE

GET DSA

COPY
PSUEDO
PSECT

RELOAD
REGISTERS

EXIT

Figure 1. Top Level Flowchart - DBPLINK

PAGE 359-o l

TOPIC E.4 - ASYNCHRONOUS INTERRUPT PFOCESSOR

A. MODULE NAME

Terminal Support - Attention Interface
Program-ID - NTSATTN
Module-ID - TSATTN
Entry Point - TSMATTN

B. ANALYST

Frank Reed
Neoterics, Inc.

C. MODULE FUNCTIONS

1. Organization Chart

See Figure 1

2. Overview

TSATTN is the interface between the monitor and
the terminal support supervisor TSUPER. Its
function is to link the monitor to the TSUPER
attention routine TSATIN, TSATTN is only called
after an asynchronous interrupt resulting from the
user depressing the attention key at his
terminal.

D, DATA REQUIREMENTS

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

On entry, TSATTN performs OS standard linkage
except that the address it picks up as its PSECT
register points to a table of v-cons vhich are (in
order): TSATIN and MTTUTAB. TSATIN is the entry
point to Terminal Support's attention processing
routine. MTTUTAB is a table which holds the user's
pseudo-register vector (PRV).

After linking, TSATTN checks the interrupted
register 13 to determine if it points to a PL/I

PAGE 36OLL

Dynamic Storage Area (DSA). If not, no further
attempt is made to process the attention. That
is, TSATTN returns to the monitor, effectively
ignoring the interrupt.

When a valid DSA is found, the PRV is checked and
if it is OK. the rSA registers are saved in an
area provided by the monitor. TSATTN next calls
TSATIN using the interrupted DSA as a savearea.

On return from TSATIN, the DSA regs are restored,
the caller's registers are restored and control is
returned to the monitor.

F. CODING SPECIFICATIONS

1. Source Language

0S/360 Assembler Language.

2. Suggestions and Techniques

The NASIS assembler macro library must be used to
reference the User Information Table (TSUTAB).
Also, entry linkage is standard OS/360 while
calling linkage is standard PL/I.

MONITOR MTTWREAD MTTREAD MTTWRITE

MTTKA MTTKB

TSATTN

TSATIN TSPROMPT TSREAD TSWRITE

DBATTN TSCNTRL TSFLUSH TSPUT

TSGETKY

ON
CONDITION IMMEDIATE
END COMMANDS

ON
DATA BASE

CONDITION
PROGRAMS

ATTENTION

Figure i. Terminal Support Organization Chart

PAGE 36 -46+

TONC E.5 - ATTENTION FROMPTING PROGRAM

A. MODULE NAME

Terminal Support-Attenticn Prompting Program
Program-ID - NDBATTN
Module-ID - DBATTN

B. ANALYST

Frank Reed
Neoterics, Inc.

C. MODULE FUNCTIONS

1. Organization Chart

See Figure 1

2. Overviel

DBATTN is called by TSUPER to issue the command
prompt I'-ATTN:" and check the user's response
thereto.

D. DATA REQUIREMENTS

1. I/O Block Diagram

Not Applicable

2. Input Data Sets

Not Applicable

3,. Output Data Sets

Not Applicable

4. Reference Tables

a. External tables

LISRMAC (USERTAE)

b. Internal Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart
N,

PAGE I344 o

See Figure 2

2. Narrative

On entry, DBATTN checks the DISABLED switch in
USERTAB. If attentions have been disabled,
TSPRTM is called to inform the user at the
terminal and execution returns to the caller. If
attentions are enabled, DBATTN sends a blank
character out to insure that the carriage is in
its home position, then issues a command prompt
with the message ''-ATTN:' to allow asynchronous
commands to be entered by the user.

TSUPER intercepts all ''immediate'' commands
except GO and calls the appropriate routine. If
the user enters GC, null or any non-immediate
command, DBATTN takes the following action:

a. GO or null - returns control to the caller,
thus signifying the end of the prompting
sequence.

b. Non-immediate command - ignores the user's
response and reprompts as above.

If the END condition is raised while executing
this module, execution control is returned to the
caller.

F. CODING SPECIFICATIONS

1. Source Language

OS/360 PL/I

2. Suggestions and Techniques

Not Applicable

PAGE 64 f0

TOFIC F.1 - RETRIEVAL INITIALIZATICN

A. NODULE NAME:

Program-ID - NDBINIT
Module-ID - DPINIT

B. ANALYST

John A. tozan, William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

This module performs the initialization functions for
the retrieval system and is the command director
(prompting module) for retrieval.

D. DATA REQUIREMeNTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Piles

Not Applicable

c. Input Files

Not Applicable

d. On-Line Terminal Entries

The program initially prompts for the FILE,
NAME and ADDRESS parameters, and later,
prompts for the retrieval commands.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

PAGE 3M707

The program issues various diagnostic
messages, where appropriate.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The program references and optionally initializes
the following tables,

USERTAB
FLDTAB
COLFORK
SEQFORM
SRCHTAB
VERPTAB
RETDATA
SETAB

E. PROCESSING REQUIREMENTS

1. TOP LEVEL FLOWCHART

See Figure 2

2. Narrative

Upon entry the program initializes itself and the
terminal support facilities. It calls DBJOIN to
process the file parameter and prompts for the
NAME and ADDRESS parameters. The parameters are
all verified and saved for later reference.

The program then initializes the retrieval data
table, RETDATA. The set table, SETAB is then
initialized, the dataplex is opened for input and
the field table, FLDTAB, is initialized.

The program then initializes its verb table,
including the addition of any user defined
commands. Now the program prompts the user for a
retrieval command. If the command entered is not
valid, a diagnostic messaqe is written to the user
and he is reprompted.

If the command entered was not END or RETRIEVE,
the program calls the entry point specified for

PAGE &96q

that command. If the called module requests
another module, the other module is called. If
necessary the original module is recalled. Then
the user is prompted for his next command. If the
user entered END or RETRIEVE, the retrieval
session is terminated by closing the data base,
erasing the sets and the formats. All searches
are cancelled. If the user entered RETRIEVE, the
program branches back to initialize itself for a
new retrieval session. Otherwise, the program is
terminated.

Due to the complex relationship of the two modules
performing the DISPLAY function (DBDSPL and
DBDSPLA), the DISPLAY paging entry point, DBDSPLP,
is within DBINIT. Only the program calling code
is utilized and a return is made following the
completion of the DISPLAY modules,

F. CODING SPECIFICATIONS

1. Source Language

The module is written using the IBM PL/I
language.

2. Suggestions and Techniques

Not Applicable

DBINIT

SYSOUT

Figure 1. I/O :Block Diagram

DBINIT T

INITIALIZE

PARAMETERS

INITIALIZE
RETRIEVAL

GET

COMMAND

is N WRITE
IT -MESSAGE

ALID

OR Y TERMINATE END N

ETRIEV RETRIEVAL ?

CALL EKIT
COMMAND
ROUTINE

Figure 2. Top Level Flowchart

PAGE 3q9

TOEC P.2 - RETBIEVAL EIELDS COMMAND

A. MODULE NAME

Program-ID - NDBFLDS
Module-It - DBFLDS

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

This module displays a formatted listing of the field
names of the file currently being accessed by the
user.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

d. On-Line Terminal Entries

The routine prompts for the parameter
associated with a PAGE command.

3, Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

The program produces a formatted list of

PAGE -l-

field names.

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4, Reference Tables

FLDTAB-The program extracts some of its
information from FLDTAB.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBFLDS

At this entry point the parameter is checked
for a paging request; if paging, the
processing continues with the label DBFLDSP
(see below). Otherwise, the program
initializes the screen and paging status
data. It extracts the database name from
FLDTAB. The program then, repetitively,
retrieves field names with calls to the field
utilities in DEFEDU - FLDGET, FLDCLAS,
FLDCTRL, and FLDSKEY. It flags each field
that has an inverted index. It posts the
field names tc the screen. When the list of
names has been exhausted, or the screen has
been filled, the screen is displayed to the
user, the paging status data is posted and
the program is terminated.

b. DBFLDSP

At this label the program is re-initialized
using the paging statrs data. If more data
remains, the program tranches to the proper
routine to build the next screen image.
Otherwise, a diagnostic message is written to
the user and the program is terminated.

F. CODING SPECIFICATIONS

PAGE 3-74

1. Source Language

The module is written using the IBM PL/I
Language.

2. Suggestions and Techniques

Not Applicable

SYSI.NN

DBFLDS

SYSOUT

Figure 1. 1/0 Block Diagram

DBFLDS

PAGING
SINITIALIZE

INITIALIZE

GET A MORE DAT
FIELD

END Y
WRITE

OF MESSAGE
LIST

POST

SCREEN

MORE ROOM

SAVE

STATUS

EKIT

Figure 2. Top Level Flowchart - DBFLDS

PAGE 4"41(

TOIC F.3 - RETRIEVAL EXPAND COMMAND

A. MODULE NAME

Program-ID - NDBXPND
Module-ID - DBXPNt

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

This module displays to the retrieval user, a formatted
listing of a cross section of an inverted index at and
beyond a specified term.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The inverted index files of a dataplex are
used as a source of data by the program.

d. On-Line Terminal Entries

The program prompts for the TERM and INDEX
parameters.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-Line Terminal Displays

PAGE 43-Y

The program produces a formatted listing of
the index records read.

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The program uses the following tables as a source
of data and as a means of data control,

USERTAB
FLDTAB
EXPTAB
EXPTERM

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBXPND

At this entry point the parameter is checked
for a paginq request; if paging, the
processing continues at label DBXPNDP (see
below). Otherwise, the program initializes
itself to perform a new expansion of an index
file. The program initializes the screen and
the data storage table EXPTAB.

The program then prompts the user for the
TERI and INDEX parameters. The parameters
are validated and the program gets ready to
read the index (or anchor) file specified.
The first read of the file is for
positioning, based upon the term entered by
the user. If more data remains on the file,
the program begins reading records, saving
the data in EXPTAB and posting them on the
screen. The relative E-number is computed
and also posted. If an end-of-file is
encountered, an indication is posted on the
screen. At this point, or when the screen is
filled, it is displayed to the user, the

PAGE 799

paging status data is posted and the program
terminates.

If any errors are encountered, a diagnostic
message is written to the user and the
program is terminated.

b. DBXPNDP

At this label the program re-initializes
itself using the paging status data. If more
data remains to be displayed the program
branches to the appropriate point to begin
reading the index and building the new screen
image. If no more data remains, a diagnostic
message is written to the user and the
program is terminated.

F. CODING SPECIFICATIONS

1. Source tanguaqe

The module is written using the IBM PL/I
language.

2. Suggestions and Techniques

The AREA facilities of PL/I should be used to
organize the term data stored in EXPTAB to
optimize file access and data storage.

q/4

SYSIN

DBXPND

INDES
SYSOUT

Figure i. I/O Block Diagram

DBXPND

Y
PAGINGPAIN INITIALIZE

INITIALIZE

GET

PARAMETERS ANY
MORE: DATA

READ
INDEK ,

MES SAGE

PROCESS

RECORD

POST

SCREEN

ANY y
MORE ROOM

SAVE

STATUS

EKIT

PAGE af

TOPIC F.4 - RETRIEVAL, Select Command

I. SELECT

A. MODULE NAME

Retrieval, SELECT Command
Program - ID - NDBSLCT
Module - ID - DBSLCT

Entry Points (rBSLCTO,DBSLCT1,DBSLCT2)

B. ANALYST

O, Kirt Hearne
Neoterics, Inc.

C. MODULE FUNCTION

The SELECT ccmmand format is:

SELECT expression,field,replace,method

The SELECT command outputs the expression and the
number of citations (record keys) for which the
expression applies. A set number or S-number is
assigned to the expression, and the command string
is entered into the next available line in the
current search strategy.

The expression parameter (keyword=EXPR) is a
boolean combination of terms which define a set.
If all fields referenced are indexed, the
expression is evaluated immediately and a
set-number assigned. If a field in the expression
is not indexed or a previous S-number is
referenced, a search entry is constructed and
saved, and an S-number assiQned.

Only a single non-indexed field is allowed in a
single SELECT expression.

The field parameter (keyword=FIELD) is used by
SELECT to resolve any values in the expression
which are not directly related to a fieldname
within the expression.

The replace parameter (keyword=REPLACE) is a
previously defined S-number which is to have its
expression replaced by the current expression.

The method parameter (keyword=HETHOD) is used to
force a search on indexed fields. To do this,
"SEARCH" must be entered as the method parameter.

PAGE fL.2J

Note that only a single field may be referenced in
this case.

SELECT will prompt the user if the expression is
missing, or the field parameter is missing and
found to be needed.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The descriptor files and the index files
may be referenced by the SELECT command.
The descriptor file is used to obtain
the data set name of the subject term
index file. The index files are used to
obtain a list of accession numbers
associated with a particular subject
term,

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The command string, as it is entered, is
saved in the region containing the
current strategy using the routine
PSTRAT,

b. On-line Terminal Eisplays.

The following is displayed if a set is
successfully produced from the
expression:

PAGE 3"t4

(1). A unique set number or S-number.

(2.) The number of citations (or keys)
in the set

(3.) The expression, with:

(a.) E-numbers replaced with the
corresponding
"fieldname=value".

(b.) Values which return a null are
notated with special symbols,
as: AGE =>>9999'<<.

(c.) If the resultant set consists
of subfile keys, the
expression will be displayed
with the subfile name, as:

(FROM:subfilerame) expression

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. EXPTAB

b. FLDTAB

c. MFCB

d, PARSED

e. SETAB

f. SRCHTAB

q. TC

h. USERTAB

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

PAGE 995

See Figure 2

2. NArrATIVE

The SELECT command outputs the expression and
the number of citations (record keys)
associated with that expression. A unique
set-number or S-number is assigned.

The input expression is a boolean expression
made up of set-numbers, S-numbers, values,
E-numbers or range forms of these terms.

The SELECT command is processed in three
phases:

1. Parsing
2. Expression analysis
3. Execution of SELECT "instructions"

SELECT parses the expression in three passes.
The first pass recognizes and marks as such,
letter strings, digit strings, operators,
special characters and delimiters. Quoted
strings are recopied to remove any double
quotes.

The second pass recognises primary elements
such as S-numters, E-numbers, set-numbers,
values, and field names. Field names are
marked as indexed or non-indexed.

The third pass recognises groupings of
elements such as range forms and associates
each value in the expression with the proper
field name. If necessary a prompt with the
keyword "FIELD" is done to obtain the field
name. This pass also sets up SELECT execute
phase instructions for the creation of sets
from basic terms such as a set-number.

Also, during the third pass, a non-indexed
field name appears in the expression, the
proper entries are made in SRCHTAB to provide
for the search to be executed later.

All information found during the first three
passes is entered into PARS TAB and
PTAE INFO. The original expression, recopied
quoted strings, and other necessary character
strings are all contained in WAS. Each
element in PARS_TAB contains an index (IDX)
into was to note the position of the item

PAGE "t-gLi

described.

The next phase of SELECT analyses the
expression algebraically and builds execute
phase instructions to perform the proper
operations. If a search is required
instructions are built to post final entries
in SRCHTAB, before the search, and to
retrieve information from SRCHTAB, after the
search, for final evaluation of the
expression.

During expression analysis, the ANDing of a
search term with another set is noted, and
instructions are created to cause the search
to occur only within the set ANDed with the
search term.

After the second phase all is ready for final
evaluation of the expression by execution of
the previously created instructions. At this
time the input command, with parameters, is
reconstructed and posted in the
CURRENT_STRATEGY data set.

If a search is required, all SELECT tables
and instructions are stored for use at the
time of search execution. An S-number is
assigned and this number, with the
expression, is output to the terminal,

If no search is required, the execution
phases of SELECT is invoked. The
instructions built earlier are now executed.
Sets are created, combined, and a altered as
the expression dictated, until the final
resultant set is obtained. This set is
assigned a unique number and posted into
SETAB through the use of the DBPSET routine
which also sends a line describing the set
(set- number, size, expression) to the
terminal.

When the user enters the EXECUTE command to
invoke the search, the DBEXSR program is
given control. This routine contains all of
the actual search logic, however repetitive
calls to SELECT (DBSICT2 entry point) are
made. The execute rhase instructions are
used by SELECT to control the search.

During a search each previously defined
S-number has associated with it an

PAGE 3t174L/t

instruction list. The first instruction in
the list for each S-number is a "branch"
initialized to pcint to the second
instruction in the list. When SELECT is
first given control, each instruction list is
executed until an S-number or a search term
instruction is encountered. The search
instruction posts proper final information to
SRCHTAB and in both cases execution of the
instruction list is svspended. A new branch
point indicating where to resume execution is
stored in the "branch" instruction at the top
of the list.

When all instruction lists have been executed
as far as possible, control is returned to
DBEXSR for the actual search to take place.
After this SELECT is called again and
instruction execution is restarted. Some
S-numbers and searches may now be evaluated.
Again each instruction list is executed until
an undefined S-number or search term is
encountered or an actual set is created and
posted. Again contrcl returns to DBEXSR.
This process continues until all instruction
lists terminate by posting a set.

The SEARCH is implemented simply as an
additional entry (DBSLCT1) into SELECT, The
command format is the same as that for the
SELECT command, thus a valid SELECT
expression may be used.

DBSLCT1 is the entry point for the SEARCH.
This command first gets and verifies the set
number or S-number on which a linear search
is to be performed. SEARCH then prompts the
user for the rest of the search expression to
be performed to the specified set. Once the
search expression is entered, then SEARCH
passes this information to the search option
part of the SELECT command. When control is
returned to SEARCH, it then prompts the user
for another search to be performed on the
same set as before. This loop continues
until the user enters a null response to the
search expression prompt, at which time
control is passed to the calling routine.

F, CODING SPECIFICATIONS

1. Source Language

PAGE

The SELECT command module is written in the
IBM/360 PL/I programming language. The
DBPL/I language extension is used to handle
all access to the files in the data base and
the TSPL/I lan.guage extension is used to
handle all communication with the terminal.

2. Suggestions and Techniques

Not Applicable

PAGE 99-

11 SELECT, THE SEARCH OPTION

A. MODULE NAME

Retrieval, SELECT Search Option
Program - ID - NDBSICT
Module - ID - DBSLCT

B, ANALYST

O. Kirt Hearne
Neoterics, Inc.

C. Module Function

The SELECT search option is a feature of the
SELECT command which guides the user through a
search strategy. The SEARCH command is used to
define a set or pseudo-set to be used as the
search universe.

The user is then prompted for linear search
expressions with the phrase:

SELECT (Set-number S-number) IF:

The reply is of the same format as the SELECT
command itself:

expression,field,replace,method

where the parameters have the same meaning as with
the SELECT Command.

The set-number or S-number defined by the SEARCH
command is added alono with an AND boolean
operator to the left end of the expression entered
in response to the SELECT IF prompt. The
resultant expression is then sent directly to the
SELECT command processor.

1. Reference Tables

a. EXPTAB

b. FLDTAB

c. MFCB

d. PARSED

P AGE 49-&-2

e. SETAB

f. SRCBTAE

q. TC

h. USERTAB

D. DATA REQUIREMENTS

1. I/O flock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input files

Not Applicable

c. Input Files

Not Applicable

d. On-line Terminal Entries

If a terminal is the source of search
parameters as previously defined, the TS
system will apply default values, if
available, to the parameters when no
values are entered.

3. Output Data Sets

a. Output Files

Using the PSTRAT routine, the command
string, as it is entered and validated,
will be saved in the region
CORR ENT STRATEGY.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figqre 2

2. Narrative

PAGE 99V

The SELECT Search command format is:

SEARCH expression,field,replace,method

which results in a set-number or S-number.
The user is then prompted for a linear
search:

SELECT (Set-number S-Number) IF:
expression
field,replace,method

The set-number or S-number is added, along
with an AND operator to the expression and
the result is sent to the SELECT command
processor. Thereafter all processing is the
same as for any SELECT expression.

After the expression is processed, the user
is again prompted with the SELECT IF
prompt. This continues until a null is
entered.

F. CODING SPECIFICATIONS

1. Source Language

The SELECT Search command is written in the
IBM/360 PL/I programming language. The
DBPL/I lanauaqe extension is used to handle
all access to the files in the data base,
and the TSPL/I language extension is used to
handle all communications with the
terminal.

2. Suggestions and Techniques

Not Applicable

EXPTAB SETABFLDTASETAB
SRCHTAB PAGTAB

TERMINAL
KEYBOARD

DSSTRAT

DISPLAY

DATA-
PLEX

Figura L 9~Bock diagram.

SELECT SA DBSLCT2
DBSLCTO

DBSLCT2 , CALLED FRO
EXSEARCH

PARSE SELECT
EXPRESSION SELECT INSTRUCTIOEXPRESSION PROCESSOR LIST FOR E CH

S-NUMBER A
FAR AS POSSIBLE

SAV E ,1 ,
ANALYZE SET-NUMBER
EXPRESSION S-NUMBE ERRORAND BUILD 9
INSTRUCTION SET

d, N ^ERRORELECT IFFLAG
PROMPT AL FLAGPOST INSTRUCTIONPOSTRATEG LISTSSTRATEGY FINI5HED? ,

NSET
, _ R TN .FINISH

ANY NRETURN FLAG

S-NUf4BEQ
, YESS-NUMBE

SEARCH A YES

SET BUILD
EXPRESSION

EXECUTE
INSTRUCTIONS

SELECT
PROCESSOR

POST
SET

B

RETURN

A 0
OUTPUT RETURN

S-NUMBER
TO TERMINAL

ETURN Figure 2. Top Level Flowchart - SELECT

PAGE 494-

TOFIC ?.5 RETRIEVAL DISPLAY CCMMAND

A. MODULE NAME

Retrieval, DISPLAY Command (module 1 of 2)
Program-ID - NDBDSPL
Module-ID - DEDSPL

B. ANALYSTS

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

The DISPLAY command is a routine whose purpose is to
allow the retrieval system user to have designated data
for a given set to be displayed on a terminal. Like
the PRINT command, the user may specify the format of
the output as the citation number, the citation, the
abstract, or the full text for any item contained in a
set which has been previously selected. Optionally,
the user may prespecify a format of his own, using the
FORMAT command, to govern the DISPLAY command. One
set-number is reserved for special purposes in the
system. Set-number 0 is a logical reference to the
entire anchor file. The PAGE command also calls the
DISPLAY command in order to create additional displays,
logically, before and beyond the current one. The
calling sequence is: DISPLAY set-number, format, item,
type or, alternately, DISPLAY citation#, format.

This module performs preliminary analysis of DISPLAY
parameters and file positioning; it then calls the
second DISPLAY module DBDSPLA via DBINIT. Refer to the
DBDSPLA Program Design Specifications.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Invut Files

Not Applicable

c. Input Files

The anchor and associated files of a dataplex
will be input to the DISPLAY command. The
complete description of the files in a data
base is found in the Data Set Specification
Section of the Worbook.

d. On-line Terminal Entries

A terminal is the most likely source of the
parameters which are passed to the DISPLAY
command. The parameters available to the
DISPLAY command are set or citation number,
format, items, and type. The NASIS system
will apply default values to the parameters,
if they are available, when no original
values are entered.

3. Output Data Sets

a, Output Files

Not Applicable

b. On-line Terminal Displays

The DISPLAY command will output a
partially-formatted display of the items in a
set or for a specific citation number. For
sequential formats, each field is started on
a new line, and the key field is always on
the first line below the header information
for a particular display. For columnar
formats, the fields from each record are
arranged across one or more lines in
columns. The content of the display depends
upon the format code entered as the second
parameter.

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COLFOR

The DISPLAY command refers to a COLFORM table

PAGE1"15

when a columnar format is referenced.

b. USERTAB

This table contains user-oriented and status
information.

c. FLTAB

The DISPLAY command refers to FLDTAB to
locate the apprcpiate sequential (SEQFORM) or
columnar (COLFCRM) format table.

d. RETDATA

This table contains data fields unique to the
retrieval sub-system.

e. PLEX

The DISPLAY command uses a DBPL/I file called
PLEX for all of its retrievals from the
dataplex.

f. SEQFORM

The DISPLAY command refers to a SEQFORM table
when a sequential format is referenced.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Display

The DISPLAY ccmmand is called by the NASIS
system by the director.

b. Accept Parameters

Since the parameters are not passed to the
DISPLAY command, by the director, they are
retrieved via Terminal Support (TS). The
first parameter is either a "set-number", or
a "citation #". The second parameter is
"format" code, the third is an "item" number
and the fourth is the "type" code. The last
three parameters are optional. The
"set-number" is a one or two digit number and

PAGE +84L3j

is not likely a default value since it will
change for every command. The "citation #"
is a character string, which is not likely to
have a default. If no entry is made and no
default exists, then an error is reported and
control passed back to the calling routine.
The "format" code is a value of 1 to 25
designating a sequential format or F1 to P25
designating a columnar format, or a format
name representing one of the above format
values or a fieldname. If no entry or
default is present, the value "2" is provided
for anchor key sets or "5" for subfile sets.
The "item" parameter designates the member of
the specified set. The entry is a character
string having a numeric value. If no entry
or default is given for this parameter, the
first item in the set is displayed. The
"type" code indicates whether the user wants
sutfile information to be displayed
continually following the anchor data, and if
so, whether the data fields of each subfile
record are to be exhausted sequentially or
the data field values are to be exhausted
across subfiles before proceeding to the next
field. An invalid entry is reported before
returning control to the calling routine. If
all parameters have valid values, then
execution continues with the next section.

The DISPLAY command is placed as the next
record in the strategy data set by a call to
the save strategy routine. The parameters to
this subroutine are the word DISPLAY and its
parameters in their normal order.

c. First Page Initialization

Depending on the "class" of the first
parameter, certain specific initialization is
necessary. If the parameter is a dataplex
key (class 1), e.g., a citation number, then
the anchor record is read and a heading
prepared. If the parameter is a set number
(class 2), the relative key is taken from the
set and used to read the anchor record and a
heading prepared. Control is transferred to
Section (f) below.

d. Page DISPLAY

The DBDSPL module is entered with a parameter
value indicating paging; control is passed to

PAGE

the DBDSPLP label. (The paging entry point
for DISPLAY is within DBINIT to utilize the
code there to handle the multi-module
transient interface.) The paging direction
and mode are indicated by the PAGE
parameters.

e. Validate Next Page

Depending on the "class" of the first
parameter to the original DISPLAY command and
the paging direction, certain specific
validation and initialization is necessary.
If the page requested has been seen before,
it need not be regenerated, but may be
retrieved from based storage, where it was
saved, and control can be transferred to
Section(g) below to display it. When
non-contiguous skip paging is being done, the
relative kev is taken from the set and the
anchor record read.

f. DBDSPLA

The remainder of the processing for the
DISPLAY command is handled by the DBDSPLA
module. This module is called via the DBINIT
Transient Nodule Interface convention.
Necessary information is retained in a common
structure called DSPLCTL.

g. Return

Do a normal return to the calling routine.

3. Submodules Required

a. DB - data base package

b. PSTRAT - save strategy

c. TS - terminal support package

d. DBSETU - set informaticn package

e. DBFLDU - field utilities

P. CODING SPECIFICATIONS

1. Source Language

The DISPLAY command is coded entirely with the IBM
PL/I programming language. The DBPL/I language

PAGE 499

extension is used to handle all access to the
files in the data base. The TSPL/I language
extension handles all instances of ccmmunication
with the terminal.

2. Suggestions and Techniques

Not Applicable

TERMINAL
ENTRY

DATA
USERTAB BASE

17

DBDSPL FLDTAB

TERMINAL RETDATA/DISPLAY

DBDSPLA

PAGE JL0-2- 3 9-

TOPIC F.6 - RETRIEVAL PRINT CCEMAD

A. nODULE NAME

Retrieval, PRINT and CANCEL commands
Program-ID - NDBPRNT
Module-ID - DEPRNT

Entry Point (DBPENT)

B. ANALYSTS

Frank E. Reed
William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

The PRINT command is a routine whose purpose is to
allow the retrieval system user to have designated data
for a given set listed on a high-speed printer. Like
the DISPLAY command, the user may specify the format of
the output as the citation number, the citation, the
abstract, or the full text for any item or range of
items contained in a set which has been previously
selected. Set number 0 is a logical reference to the
entire anchor file, Optionally, the user may
prespecify a format of his own, using the FORMAT
command, to govern the PRINT command. All of the uses
of the PRINT command during a single terminal session
will be accumulated and printed out as one continuous
output for the user to pick up at a later time. All
prints are queued for the user to be printed later by
the DBA with the Print Monitor (DBPRINT). Prints
issued on S-numbers (pseudo-sets) are not queued but
merely deferred until after the EXECUTE command;
parameters are saved in SPRNTAB. The command sequence
is: PRINT set-number, format, item(s), type, copies,
or, alternately, PRINT citation#, format.

The CANCEL command terminates an active SEARCH
specification or deletes one cr more queued prints
called BSN's. The command sequence is: CANCEL
range.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

DISPLAY

PAGING

ACCEPT VALIDATE
PARAMETERS NEXT PAGE

FIRST PAGE NEXT PAGE j
INITIALIZA- INITIALIZA-
TION TION

DBDSPLA

RETURN

Figure 2. Top Level Flowchart

PAGE 1 10 ,

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The anchor and associated files of a data
base are input to the PRINT command.

d. On-line Terminal Entries

The parameters available to the PRINT command
are "set-number" (or "citation number" or
"s-number"), "format", "items", "type", and
"copies". NASIS will apply default values to
the parameters if they are available, when no
original values are entered,

3. Output Data Sets

a. Output Files

The output of the PRINT command consists of
the strategy library containing the queued
BSN.

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COLFORM

The PRINT command refers to a COLFORM table
when a columnar format is referenced.

b. FLDTAB

The PRINT command refers to FORMTAB to locate
the appropiate sequential (SEQFORM) or

PAGE 4#O

columnar (COLFCRM) format table.

c. USIPTAB

This table contains user-oriented and status
information.

d. PLEX

The PRINT command uses a DBPL/I file called
PLEX for all cf its retrievals from the data
base.

e. SRCHTAB and ENTRYDEF

These tables contain S-number information.

f. SEQFORM

The PRINT command refers to a SEQFORM table
when a sequential format is referenced.

g. RETDATA

This table contains data fields unique to the
retrieval system.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Print/Cancel

The PRINT command is called by the director;
processing continues with Section (b). The
CANCEL command is called by the director with
a non-zero parameter value; processing
continues with Section (d).

b. Accept Parameters

Since the parameters are passed to the PRINT
command through Terminal Support, they are
arranged in a keyword or predefined order.
The first parameter is either a "set-number",
as defined by a SELECT command, or a
"citation #" or an "S-number" as defined by a
SELECT-IF command. The second parameter is a
"format" code, and the third is an "item"

PAGE 4-9

number or range of numbers. The fourth
parameter is a "type" code governing the form
of sequential formatting, and the fifth
parameter is a "copies" option for up to 9
copies. The latter two parameters are
optional. The set number will be a one- or
two-digit number and will not likely have a
default value since it changes for every
command. The "citation #" is a character
string which also will not likely have a
default. If no entry is made and no default
exists, then the error is reported and
control passed back to the calling routine.
The "format" code is a value of 1 to 25
designating a sequential format or F1 to F25
designating a columnar format or a format
name representing one of the above format
numbers. If no entry or default is present,
the value of two is provided for anchor key
sets or four for subfile sets. The "item"
parameter is not required when the "citation
#" is entered as the first parameter;
otherwise, it designates the member or range
of members of the specified set. The entry
is a character string of one to eleven
positions. When a range of items is entered,
the two values are separated by a hyphen. If
no entry or default is given for this
parameter, all of the items in the set are
printed. The "type" parameter may be 1, 2,
or 3; a type of 1 is the default. The
"copies" parameter may have a value up to 9,
with 1 as the default. An invalid entry will
be reported before control is returned to the
calling routine. If all parameters have a
valid value, then execution continues with
the next secticn.

The PRINT command is placed as the next
record in the strategy data set by a call to
the save strategy routine. The parameters to
this subroutine are the word PRINT and its
Darameters in their normal order.

If the first parameter was an S-number, the
provided parameters are entered in a SPRNTAB
table for later use and processing continues
with Section (e) below.

c. Queue the Print

The data pertinent to produce the print is
then stored in the user's strategy file as a

PAGE -o-6--4 q3

batch sequence number (BSN) to be later
processed by the Print Monitor (DBPRINT).
Processing continues with Section (e).

d. Cancel Processing

The CANCEL parameter may have the value of a
BSN (i.e. 1, 2, etc.), *ALL meaning all
outstanding prints queued for the user, or
the string 'SEARCH'. For a CANCEL SEARCH
command the director is returned to with an
indication made to call the DBEXSR module to
perform the CANCEL. The BSN cancels are
handled thusly. The BSN is verified to exist
and then to be the user's. Then the strategy
region containing the BSN(s) is deleted.
Processing continues at Section (e).

e. Return

When all processing for the PRINT/CANCEL
command has been completed, control is
returned to the calling routine.

3. Subroutines Required

a. DB - data base package

b. PSTRAT - save strategy

c. TS - terminal support package

d. DBSETU - set informaticn package

e. DBFLDU - field utilities

. CODING SPECIFICATIONS

1. Source language

The PRINT command is coded entirely with the IBM
PL/I proqramminq language. The DEPL/I language
extension is used to handle all access to the
files in the data base, and the TSPL/I extension
handles all instances of communication with the
terminal.

2. Suggestions and Techniques

a. Normal PL/I statements are used to write the
line images to the print data set.

b. The many external variables required in the

PAGE -

PRINT command are combined into external
data structures, it many cases. This
reauires only one name to be an external
symbol.

TEPMIn L i

ENTRY

PRINT

USERTAB
DATALEX

FLDTAB

PRINTER
FILE.

RETDATA
SAVEFgLE

REPORT

Figure l* I/O Block diagram

PRINT

ACCEPT
PARAMETERS

NITIALIZA-
TION

PROCESS
FROM PROCESS

FROM
DATAPLEX SAVFILE

RE-
NITIALIZA-
TiOm

RETURN

Figure 2. Top level flowchart

PAGE 4H-tL L7

TOfIC FP.7 - RETRIEVAL EXECUTE COMEANE

A. MODULE NAME

Retrieval, EXECUTE Command
Program-ID - NDBEXSR
Module-ID - DrEXSR

B. ANALYSTS

Barry G. Hazlett
William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

The EXECUTE command's purpose is to identify the
overall search universe for all linear search commands
defined on the same set, perform a linear search upon
that universe, and call, if requested, the SELECT,
PRINT, and/or report generator modules to perform
set-list formations, list printing or list format
printing, respectively. Use of the EXECUTE command
informs the NASIS system that user has specified all of
his SELECT-IF and/or PRINT commands for his linear
search and is now ready to have them executed.

The format of the Execute-Search command is as
follows:

EXECUTE

Use of the EXECUTE command informs the NASIS system
that the user has specified all of his search requests
on one or more sets and is nowv ready to have them
executed. When an attention interrupt is made, the
EXECUTE command will return the user with its current
status; i.e., the file teinq searched, the number of
processed records and the number of records to be
processed. To continue any further in the execution of
the linear search, the user must then enter:

GO which will resume the search at the
point of execution, or

END which will terminate the search in
progress, returning the user to the
point of his strategy immediately before
the last EXECUTE,

D. DATA REQUIREMENTS

PAGE 444-4qL/

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Inrut files

The dataplex anchor file is accessed to
obtain the records for the linear search.
The complete description of the files in a
dataplex is found in the Data Set
Specifications Section of the Workbook.

d. On-Line Terminal Entries

If a Terminal is the source of EXECUTE
parameters.

3. Output Data Sets

a. Output Files

Using the PSTRAT routine, the command string,
as it is entered (modified if any by prompt
responses) and validated, is saved in the
region CURRENT-STRATEGY of the strategy
library. For a complete description of the
library, refer to the Specifications for the
strategy file(DWB, Section IV, Topic H.2).

b. On-Line Terminal Displays

The following is displayed at the output
interface by the set utilities module
(DESETU):

1. new set number,
2. items contained in a new set, and
3. the (combined) expression describing the

new set.

for each set created as the result of the
linear search. All diagnostic messages are
displayed in the prompt area of a screen.

PAGE 44-2- /

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. FDLTAB is the descriptor field table
referenced to determine the data base name

b. SRCHTAB is the search table referenced to
obtain search status switches and pseudo-set
table (ENTRYDEF) pointers.

c. Other search tables referenced are ENTRYDEF,
S#ENTRY, VALUTAB, VALUE, and SPRNTAB. The
data in these tables is described in their
respective Data Set Specifications.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The EXECUTE calling sequence is as follows:

CALL DBEXSR

Search processing will follow the following
steps:

I. Notify STATISTICS of the search and what
dataplex.

2. Call DBSLCT to set up search tables.

3. Identify a search set; group tests on
that set.

4. Read in records of the the search set
one at a time.

5. For each record test each field against
its corresponding test criterion as
defined in the LS strategy.

6. Each successful record is added to a

PAGE 4+S'5VC

search list associated with the
pertinent test pseudo-set.

7. After all records have been tested, new
sets are made with the lists for
pseudo-sets involved in the search and
dependent pseudo-sets defined by a
Booolean SELECT via a call to a special
entry point in the DBSLCT module.

8. If there is another set to search
continue at step 2.

9. All pseudo-sets requiring a "PRINT" are
printed via a call to the PRINT command
(DBPRNT).

At the search termination all unnecessary dynamic
storage will be freed. In addition a special
entry point parameter value for the CANCEL SEARCH
command will accomplish the same function.

SCODING SPECIFICATIONS

1. Source language

The EXECUTE command is written in the IBM PL/I
programming language. The DBPL/I and TSPL/I
languaqe extensions are used for dataplex file
accessing and terminal communication,
respectively.

2. Suggestions and Techniqges

It is suggested that comsiderable analysis be made
of search universes to determine the final search
universe for the EXECUTE ccmmand due to the rather
large dataplexes that may exist. The success of
reducing a search universe to its minimal size is
reflected to the user in response time.

TERMINAL DATA-
COMMANDS PLEX

USER
TABLE

(USERTAB)

SEARCH
LISTS EXECUTEEARCH

TABLES

SFIELD
TABLE

I (FLDTAB)

TERMINAL
DISPLAY

Figure i. I/O tlcOk Diagram

DBEKSR E2
CALL SELEC 1D
TO INIT.
PSEUDO SET _
TABLES CALL I CALL

IDENTIFY SELECT FOR
A SEARCH SETS FROM

SET s#'s

El

UPDATE
SSPSEUDO SETON SEARCH

SET FOUND TABLES

ALLOCATE A MOR
LIST FOR EACH SEARCHES
PSEUDO SET IN
GROUP

EVALUATE CALL
SEARCH PRINT

REQUESTS
NEEDED

E2 RETURN

Figure 2. Top Level Flowchart

PAGE 4-5 3

TOFC F.8 RETRIEVAI SETS COMMAND

A. MODULE NAME

SETS Command
Program-ID - NDBSETS
Module-ID - DBSETS

B. ANALYST

James A. Wesley
Neoterics, Inc.

C. MODULE FUNCTION

The primary function of the DESETS module is to display
to the NASIS Retrieval Sub-system user a list of the
sets or s-numbers he has formed durina the current
strategy session. The list is displayed in the form:
set number or s-number, number of items in the set, and
the expression that formed the set.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

SETAB and Strategy library

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

PAGE 4HL,52.f

b. On-line Terminal Displays

The terminal display from this module will
consist of a list of the set numbers or
s-numbers, the number of items in the set and
the expression that formed the set,

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. SETAB

b. TS

c. DB

d. Strategy library

e. SRCHTAB, ENTRYDEF, and S#ENTPY

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBSETS

The SETS command is used by the Retrieval
System user to display all the sets or
s-number (pseudo-set) he has created. Upon
entry at the DBSETS entry point, it checks
the parameter for paging request: if paging
is needed, processing continues at label
DBPAGST (see below). Otherwise, it
allocates controlled area for the current
user to keep track of his paging
operations.

The module looks for any parameters that were
passed with the ccmmand. If there are none,
the module will default to set numbers and
start displaying at the beginning of SETAB.

PAGE +"rq55

If a number between 1 and 97 is passed, the
module verifies that as a valid set number
and starts the displaying with that number.
Paging backwards frcm this point is not
supported, the user need only restarts SETS
at a lower set number to achieve this
effect.

If the parameter is an 'S' the module will
display s-numbers (pseudo-sets). A second
parameter may be included here to indicate
starting at a specific s-number. Here again,
the number is verified, and backwards paging
is not supported.

This processing continues until the bottom of
SE!AB or SRCHTAB is encountered or the TS
supervisor indicates the output screen is
full and automatically writes the screen.

DBSETS saves the set number or s-number, that
would have caused the screen overflow, in the
user control table. This set number or
s-number is then used as the first number to
appear on the next page forward.

b. DBPAGST

This label is called by the TS supervisor
when the user wishes to page in either a
forward or backward direction through his
list of sets.

DBPAGST validates the command and
(re)constructs a page in the appropriate
direction. Only the letter 'B' will cause a
backwards page operation; anything else
defaults to forward.

F. CODING SPECIFICATIONS

1. Source Language

The module is written in the IBM PL/I programming
language. The rBPL/I and TSPL/I language
extensions are used for data base access and
terminal I/O, respectively.

2. Suggestions and Techniques

Not Applicable

SETAB

DBSETS SEARCH
TABLES

STRATEGY
LIBRARY

DISPLAY

Figure 1. I/O Block Diagram

DBSETSS

PPAGING

SET
PAGING ARAM'B'

ALLOCATE BACKBWARD

USER

TABLE

TSETN
PAGING

PARA='S' SET FORWARD
STARTING
S-NUMBER

TELLN MORE
SET USER PAGES

STARTING A

SET NUMBER

GET RETURN S

NUMBER, NUMBER
XREFS,.

EXPRESSION

PUT TO

SCREEN

VERFLOW N EOF N

SAVE
NEXT
NUMBER

PUT

RETURN

TOIC F.9 - RETRIEVAL SETS UTILITIES

A. MODULE NAME

Program-ID - NDBSETU
Module-ID - DBSETU
Entry Points - DBGSET and DBPSET

B. ANALYST

James A. esley
Neoterics, Inc.

C. MODULE FUNCTION

The function of the DBSETU module is to provide set
expression updating functions for various retrieval
modules which create of reference sets.

The entry points DBGSET and DEPSET are called from
application programs to GET SETS and POST SETS,
respectively.

D, EATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

SETAB and Strategy library

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

SETAB and Strategy library

PAGE 4%4245-1

b. On-line Terminal Displays

The terminal display from this module will
consist of a list of the set numbers or
s-numbers , the number of items in the set
and the expression that formed the set.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. SETAB

b. TS

c. DB

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBPSET

This entry Foint is available to the
application programmer who wishes to post a
new set and its corresponding data to SETAB.
The calling sequence follows:

CALL DBPSET(POINTER,EXPRESSION,SET#);

Where:

POINTER - is a pointer variable passed by the
user. It points to the list to be posted.

EXPRESSION - is a varying length character
string, maximum 256 bytes. It is passed by
the user as the expression that formed the
set to be posted.

SET# - is a varying character string, maximum
2 bytes long. It is passed by the user as
the one byte subfile suffix character for the

PAGE -41-2W/-4

set being posted and is returned by DBPSET as
the 2 byte set number cn a successful posting
or a null string to indicate an I/O error or
no more sets available.

This entry point first checks for a slot in
SETAB: if none are available, it sets the set
number variable to null and returns to the
user,

If a set number is available,it verifies the
suffix as being between Q and Z or it assigns
a blank suffix. DBESET then collects and
posts the data to SETAB and the STRATEGY
LIBRARY. It posts the set number for the
user and returns.

b. DBGSET

This entry point is available to the
application programmer who wishes to get and
verify a given set number. The calling
sequence follows:

CAIL DBGSET(SET#,POINTER,#IIST,SUFFIX);

Where:

SET# - is a varying length character string,
maximum 3 bytes long. The user passes this
variable as the set number, and optionally
the subfile suffix, to be gotten and
verified. If either the set number or the
suffix is invalid, that is, a non-existent
set number or a wrong suffix, this variable
is returned as null.

POINTER - is a pointer variable. It is
returned by DEGSET as a pointer to the set
(list).

#LIST - is a integer full word. It is
returned by DBGSET as the number of XREFS in
the set.

SUFFIX - is a single character. It is always
returned as the correct suffix for the set
requested. In the event an invalid suffix is
specified in the set number, the set number
is returned as null and the correct suffix is
returned here.

DBGSET first separates the set number from

PAGE *-54/

the suffix and verifies bcth. If either is
invalid, set number is returned as null and
the correct suffix, if available, is put in
SUFFIX. If the validation is successful, the
set number, the list pointer, the number of
XREFS and the suffix are returned to the
caller.

SCODING SPECIFICATIONS

1. Source language

The module is written in the IBM PL/I programming
language. The DEPL/I and TSPL/I language
extensions are used for data base access and
terminal I/O, respectively.

2. Suggestions and Techniques

Not Applicable

RETRIEVAL
COMMAND
M ODULE

SETAB

DBSET

STRATEGY
LIBRARY

DISPLAY

Figure 1. I/O Block Diagram

PAGE *29

TOPIC P.10 - RETRIEVAL FORMAT COMMAND

A. MODULE NAME

Retrieval, FORMAT Command (module 1 of 2)
Proqram-ID - NDBFORM
Module-ID - DBFORM.

B. ANALYST

Garth B. Wyman
Neoterics, Inc.

C. MODULE FUNCTION

The DBFORM module is the first FORMAT command routine,
called by the retrieval system, whose purpose is to
allow the retrieval system user to define, revise
and/or display the content and format for subsequent
information retrievals using the DISPLAY or PRINT
retrieval commands. Sequential and columnar formats
may be defined.

Sequential formats extend the series of predefined
formats 1-4 by allowing the user to select a set of
fields to be displayed one under another with no more
than one record's fields per output page.

Columnar formats are a separate series allowing the
user to select a set cf fields to be displayed in
tabular format. Optionally, the user may define screen
or printer output, page numbering, titles, column
headers, column positions, and element tallying,
summing and averaging.

After a current format has been established, the DBFORM
module functions as a command director processing the
FIELD, FIELDS, NAIE, STORE, FCRMATS, DISPLAY, PAGE,
TITLE, HEADER, FORMAT and END sutcommands of the FORMAT
command. Although DBFORM recognizes all FORMAT
subcommands, for the HEADER and FIELD subcommands a
transient call is made via DBINIT to the second FORMAT
command module DBFORMA. Refer to DBFORMA Program
Design Specification for the details of these two
subcommands.

The user may review the apvearance of the ultimate
display (paging through screen-width portions, if
necessary). The user has complete revision and storing
capability.

D. DATA REQUIREMENTS

PAGE T 1L

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c., Input Files

Not Applicable

d. On-line Terminal Entries

A terminal is the most likely source of the
parameters which are passed to the FORMAT
command by the Terminal Support system. The
fundamental parameters are the format number
and the field names. Default values for the
fundamental parameters are unlikely. The
FORMAT command then accepts the FORMAT
sutcommands and their parameters.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

For sequential formats, the DISPLAY
subcommand will display the field names
vertically in the order they will ultimately
be displayed. The PAGE subcommand will
display any field names that do not appear on
the first screen°

For columnar formats, the DISPLAY subcommand
will display the title and header values and
field column positions as they will
ultimately be displayed. In the case of
printer formats wider than the display
screen, the left-most portion will be
displayed initially. The PAGE sub-command
will display subsequent portions. These
displays will show the positioning and length

PAGE 4tZL

of the field values for the first data line:
otherwise, they have the same format as the
DISPLAY and PRINT retrieval commands produce
(see Section III, Topic F.4 of the DWB).

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COL FORM

When the FORMAT command processes a new
columnar format, it allocates and initializes
a COL FORM structure and posts its base
address in the COLFOEMAT array in FLDTAB.
When the FORMA! command processes a TITLE or
HEADER sub-command or any other revision to a
columnar format, it updates the appropriate
COLFORM structure. Thus, a COL FORM
structure specifies a columnar format for use
by the DISPLAY and PRINT commands.

b. FLUTAB

The FORMAT command refers to DATAPLEX portion
of FLDTAB. The FORMAT command also posts the
SEQFORMAT and COL-FORMAT arrays as it
processes new formats.

c. SECFORM

When the FORMAT command processes a new
sequential format, it allocates and
initializes a SEQ_FOPM structure and posts
its base address and field name count in the
SECFORMAT array in FLETAB. Thus, a SEQ_FORM
structure specifies a sequential format for
use by the DISPLAY and PRINT commands.

d. USERTAB

The FORMAT command checks the
USERTAB.RETRIEVE switch to verify that it is
being called properly.

E. PROCESSING REQUIREMENTS

PAGE 441Z2

1. Top Level Flowchart

See Figure 2

2. Narrative

a. Format

The FORMAT ccmmand is recognized by the
retrieval system director module DBINIT which
calls the DBFOPM entry point.

b. Process FNUMBER parameter

An FNUMBER parameter value is obtained from
the Terminal Support system. If null or
blanks are entered, the FORMAT command is
cancelled. The value is checked for proper
syntax and for range and duplication of the
number; errors are diagnosed and the user
allowed to re-enter. If the value is a name,
the external GETSFMT routine is called to
obtain the stored format. For a new format,
a SEQ FORM or COLFOCRM structure is allocated
and initialized according to given and
default options and the structure's base
address posted in FLDTAB. For a revised
columnar format, any options given will
result in the CCL_PFORM structure being
modified or re-allocated and initialized
accordingly. Femoval of page numbering may
be specified and/or expansion to printer
width or contraction to screen vidth. If the
width changes, any titles are re-centered.
If the width changes and the columns are
proportional, they are re-proportioned and
their headers (if any) re-centered. If the
width expands and the columns are explicit,
the rightmost column will have its width
expanded and its headers (if any)
re-centered. If the width contracts and the
columns are explicit, columns to the right of
a screen width are dropped from the format
with their headers (if any) and the remaining
rightmost column will have its width reduced
and its headers (if any) re-centered. Thus,
a current format has been established for
further processing.

If a FLDSPEC parameter was entered explicitly
by the user with the FORMAT command, control
passes to (d.) below where the parameter is
processed. Otherwise, processing continues

PAGE 4 1

at (c.).

c. Process subccmrand

A command is obtained from the Terminal
Support system. If it is a valid FORMAT
subcommand, it is processed by one of the
routines (d.) through (k.) below. Otherwise,
it is diagnosed as an invalid subcommand and
the user allowed to re-enter.

d. Process FIELD command

This subcommand is handled by the DBFORMA
module; it is called via the DBINIT
Transient Module Interface convention.
Necessary information is retained in a common
structure called FORMCIL.

e. Process FIELrS or FORMATS command

These commands are recognized as a
convenience to the user to save him having to
leave FORMAT and later re-enter it.
Processing consists only of a call to the
external entry point DBFLDS or DBSTRT2
respectively; the DBFIDS module is called via
the DEINIT Transient Module Interface
convention.

f. Process NAME or STORE command

An FITNAME parameter value is obtained from
the Terminal Support system, validated
syntactically by calling the external DBUCHEK
routine, and checked for duplication of the
name of any other current format. For a NAME
command, the value is simply posted in
FLDTAB. For a STORE command, the value is
posted in FLDTAB or it is verified that a
name value was posted there previously and
the external PUTSFMT routine is called to
store the format for availability in later
sessions, If the FMWNAME value is invalid or
missing or if PUTSYNT returns an error code,
a diagnostic is issued and the user allowed
to re-enter it.

g. Process TITLE command

If the current format is not columnar, the
TITLE command is cancelled with a diagnostic
message.

PAGE *1r41,P

A TTLLINE parameter value is obtained from
the Terminal Support system, if the user
entered it explicitly, or by assuming the
next relative title line number. The value
is checked for syntax, range, duplication,
and space in COL_FCOM.TOP. Any error is
diagnosed and the user allowed to re-enter
the parameter. For a title line deletion,
any lower title and header line images are
shifted up and CCL FORM.TOP.#TITLES is
decremented and contrcl branches to (c.).
For a new title line, any lower title and
header line images are shifted down and
intervening lines blanked in
COL FORM.TOP.LINE and COL FCRM.TOP.#TITLES is
posted.

A TTLSPEC parameter value is obtained from
the Terminal Support system, if the user
entered it explicitly, or by taking the
FLDTAB.DATAPLEX name value and stripping any
trailing dollar sign characters. The value
is posted centered in the particular
COLFORM. TOP.LINE.

h. Process HEADER command

If the current format is not columnar, the
HEADER command is cancelled with a diagnostic
message.

This subcommand is handled by the DBFORMA
module; it is called via the DBINIT Transient
Nodule Interface convention. Necessary
information is retained in a common structure
called FORNCTL.

i. Process DISPLAY command

A display screen image is composed and
transmitted via the Terminal Support system
to the user's terminal showing the format as
currently defined. The displav simulates the
appearance produced by the retrieval system
DISPLAY command if it vas used with the
current format.

If a sequential format display overflows the
screen at the bottom or if a columnar format
display overflows the screen at the right
side, "NORE" is indicated and the Terminal
Support system is requested to call DBFORMP
if the user enters the PAGE immediate

PAGE 'eq

command.

When the module is entered at the main entry
point with a parameter value set for paging,
a DIRECTON parameter value is obtained from
the Terminal Support system, if the user
entered it explicitly, or by assuming forward
paging. If the value starts with "B" the
previous display screen image is re-composed,
otherwise the next display screen image (down
or to the right) is composed. Screen
overflow is rechecked to reset the "MORE"
indication and the Terminal Support system
transmits the screen image to the user's
terminal.

j. FORMAT command

If "FORMAT" is detected as a sub-command,
control simply branches up to (b.) where its
parameters are obtained and it is
processed.

k. END command: FETURN

The END subccmmand causes control to be
returned to the retrieval system director
module DBINIT.

If the END condition is raised by the user
entering the IND immediate command in blocks
(a.) or (b.), contrcl returns to the DBINIT
module. If it is raised after block (b.)
control branches to blcck (c.), that is, the
subcommand is aborted and another taken.

3. Submodules required

DBFORMA - FORMAT command, module 2
DBFLDU - field utilities
DBFLDS - FIELDS subcommand
DBSTRT2 - FORMATS subcommand
DEUCHEK - check name routine
GETSFMT - get stored format
PUTSFPT - put stored format
PSTRAT - save strategy
TS - terminal support package

F. CODING SPECIFICATIONS

1. Source Language

The FORMAT command is coded in IBM PL/I. The

PAGE

TSPL/I language extension is used for all
communication with the terminal.

2. Suggestions and Techniques

The PSTRAT external routine shall he called
whenever a valid command or subcommand with valid
parameters is detected.

Subroutine facilities shall be coded to handle the
general case of re-proportioning columns,
re-centering headers, and shrinking sequential
formats (DUP_CCL, FE_PROCOL, RE BEAD,
SHRINKSEQ).

TERMINAL
ENTRIES

DBFORM FLDTAB

COL-FORM

TERMINAL
DISPLAYS DBFORMA

Figure 1. I/O Block Diagram

FORMAT

PROCESS
FNUMBER
PARAMETER

PROCESS
SUBCOMMAND

PROCESS
FIELD

DBFORMA

PROCESS
FIELDS/
FORMATS
COMMAND

PROCESS
NAME/
STORE
COMMAND

PROCESS
TITLE

COMMAND

PROCESS
HEADER
COMMAND:
DBFORMA

PROCESS

DISPLAY

COMMAND

FORMAT
COMMAND:

END COMMANDFigure 2. Top Level Flowchart

RETURN I Figure 2. Top Level Flowchart

PAGE -#IS

TOPIC F.11 - STORED FORMATS

A. MODULE NAME

Program-ID - NDBSFMT
Module-ID- DBSFMT

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

The function of this module is to provide generalized
GET/PUT routines for the processing of stored
formats.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input File

Not Applicable

c. Input Files

Not Applicable

d. On-time terminal Entries

Not Applicable

3. Output Eata Sets

a, Output Files

Not Applicable

b. On-Line Terminal Displays

The program produces diagnostic messages for
the various errors that may occur.

PAGE t40Ml74

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The following tables are referenced, used in the
construction of new formats and used to output
exiting formats.

FLDTAB
SEQFORM
COLFORM

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. GESFMT

At this entry point the program initializes
itself to read in a previously stored format.
It verifies the name of the format and checks
to see if the format is already in the format
table. If so, the program returns
immediately with the appropriate
information.

If the format must be reading, the first
record of the format is obtained by calling
TSGETRG, This record is analyzed to
determine if the format is columnar or
sequential. The appropriate format tables
are then searched for a slot into which the
format can he placed and the format is
allocated and initialized.

The program then obtains the remaining format
records and posts the data obtained into the
appropriate locations within the format
entry. If any errors are encountered, an
appropriate diagnostic message is written to
the user and the partial format is freed.
After an error, or when the format has been
completed, the required information is

PAGE -4H-q75

updated and the program returns to the
caller.

b. PUISFMT

At this entry point the program initializes
itself to write cut one of the currently
defined formats. It verifies the name of the
format and checks to see of the format exists
in the format tables, If not, the program
terminates with a diagnostic.

If everything is in order, the program
constructs the first format record (FORMAT),
indicating the format name, type, the
intended file name and other descriptive
information and writes it to the data set by
calling TSPUTRG,

The remaining format data is organized into
TITLE, READER and FIELDS records and written
to the data SET in the same fashion as the
FORMAT record. If any errors are
encountered, an appropriate diagnostic
message is written to the user and the
partially stored format is erased. After an
error, or when the format has been completely
written out, the reguired information is
posted and the plcoram returns to the
caller.

F. CODING SPECIFICATIONS

1. Source Language

The module is written using the IBM PL/I
Language.

2. Suggestions and Techniques

Not Applicable

DBSFMT

SYSOUT

Figure 1. I/O Block Diagram

PAGE 4HL1--7 7

TOPIC F.12 - E NUER ROUTINE

A. MODULE NAME

Program-ID - NDBXPNDE
Module-ID - CEXPNDE

B. ANALYST

John A. Lozan
Neoterics, Inc.

C, MODULE FUNCTION

This module is called by DBSICT to validate an E-number
and, if valid, to return associated data.

D. DATA REQUIREMENTS

1. I/O Block Diagran

Not Applicable

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Not Applicable

d. On-line Terminal Entries

Not Applicable

3. Output Eata Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print Outs

PAGE

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

EXPTAB
EXPTEIM

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

Not Applicable

2. Narrative

This module initializes itself to decode an
E-number reference. If the E-number parameter is
valid, the data asscciated with it is passed back
to the caller (DESLCT) and the program is
terminated.

F. CODING SPECIFICATION

1. Source Language

The module is written in ItM PL/I language.

2. Suggestions and techniques

Not Applicable

PAGE 4449-

TOPIC F.13 - BATCB PRINT MONITOR

A. MODULE NAME

Program - ID - NDBPRINT
Nodule - ID - DBPBINT

B. ANALYST

Frank Reed
Neoterics, Inc.

C. MODULE FUNCTION

This program controls the execution of the batch print
system in much the same way that NDBINIT controls the
retrieval system. That is, it initializes file-related
tables and issues ccmmand prcmpts to activate batch
sub-system operations.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1.

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

NASIS.USERIDS

d. On-line Terminal Entries

The user f the batch print system
communicates with the system through a series
of command and data prompts. The commands
and parameters are:

1. END

Terminate the terminal session

2. PRINT NASISID=,BSN=

PAGE &q,

Produce a formatted print-out of data from a file
utilizing information saved in the print queue for
Nasis ID with Batch Sequence Number (BSN)
specified.

3. HOLD NASISID=,BSN=

Place a print job in "hold" status.

4. RELEASE NASISID=,ESN=

Place a print job in "active" status so that it
can be executed.

5. EXHIBIT NASISID=,SN=

Display a formatted description of the contents of
the batch print queue at the user's terminal.

6. NIUMBER NASISID=

Tally the number of print tasks in the queue.

7. CANCEL NASISID=,BSN=

Remove a print task from the queue.

8. KEYS NASISID=,BSN=

Display the file name and record keys recorded for
a print task.

9. COPIES NASISID=,BSN=,COPIES=

Overide the user specified value for number of
copies of a printed report.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

PAGE AIt-4 ?I

Not Applicable

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowcharts

See Figure 2.

2. Narrative

DBPRINT gets control from DBMTT, then prompts for
one of the commands outlined in section 2D. If
the command is PRINT, the information relating to
the user's print queue is retrieved from the
strategy data set and used to open the file from
which data is to be printed. After all
initialization is complete, control is passed to
DBWRIT to perform the actual data retrieval and
printing.

All other commands provide various operations on
the user's print queue as described above, except
END, which returns ccntrol to DBMTT.

F. CODING SPECIFICATIONS

1. Source Language

Pi/I

2. Suggestions and Techniques

Not Applicable

DATA-
BASE

USERIDS
DBPRINT

TERMINAL

NASIS STRATEGY, DATASET

Fig. 1 I/O Block Diagram

ENTER 7 1'

INITIALIZE
VARIABLES

2

CALL PROMP
FOR A
COMMAND

DISPLAY
INFORMATIO

END YES
RETURN

CALL PROMP/ FOR ID

UMBER YES CLEAR ACCUMULATE
R YES

TATISTICSCOMMAND COUNTERS TRATISTICS
STRATEGY

ALL NO CALL
IDS PROMPT

W NTE iFOR
- RANGE

GET NEXT
NASIS

ID

GET
PRINT
UEU

I FIG. 2 TOP LEVEL FLOJCHART

0

PAGE 4&2 7/_L/C7L

TOIC F.14 - BATCH PRINT WRITER

A. MODULE NAME

Program - ID - NDBNRIT
Module - ID - DBWRIT

B. ANALYST

Frank Reed
Neoterics, Inc.

C. MODULE FUNCTION

This program retrieves data from a user - specified
data base and prints a listing in either a predefined
seauential format or a user-defined sequential or
columnar format,

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Fiqure 1.

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Any NASIS data base.

d. On-line Terminal Entries

None

3. Output rata Sets

a. Output Files

Print file (PRINTER)

b. On-line Terminal Displays

Not Applicable

GET DATA
OR NEXT
PRINT

CALL
DBPAC TO
OPEN PILE
FILE

CALL
DBPAC TO
CREATE A

IST OF KEYS

CALL
DBWRIT
TO DO
PRINTING

(7

DATA-
BASE

DBWRIT

PRINTER

FIGURE 1 I/O BLOCK DIAGRAM

ENTER

OPEN
PRINT
FILE

INITIALIZE
VARIABLES

PRINT
TITLE
PAGE

GET NEXT

PRINR COLUMN

DISPLAY L NO

FIELD NAME ECORD
AND DAT_

PRINT
SUMARY -NY YES POST
INFORMATION. ERRORRETUR

RETURN

FIGURE 2 TOP LEVEL FLOWCHART

PAGE 4 8 '

c. Formatted Print Outs

User - defined sequential or columnar
prints.

d. Punched Card Output Files

Not Applicable

4, Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowcharts

See Figure 2.

2. Narrative

DBWRIT cets control from EBPRINT, then opens the
PRINTER output file and creates the title page.
Next, a record from the data base being retrieved
from is read and either sequential or columnar
formatting is begun based on a table of field
names specified by the user. For sequential
formats, the field names and associated data are
displayed on successive lines vith the field names
to the left of the data. Columnar formats require
the printing of header and title information
(saved by the PRINT and FORMAT functions) along
with the field names or other identifier for each
column of data across the top of each page. The
data for each field is presented under the
appropriate column heading until the list of
record keys is exhausted.

When all printing of data is completed, a summary
of information contained therein is displayed.
For sequential prints this is simply a count of
the number of records displayed. For columnar
prints, this can be, optionally, a tallyv sum, and
average of the numerical values of items occurring
in one or more of the columns.

After closing the PRINTER file, control is
returned to DBPRINT with a return code of 'X' for
a print terminated by the operator of '0' for a
print terminated by a data base error. The return
code is unchanged if the print completes
successfully.

PAGE A-&*q

F. CODING SPECIFICATIONS

i. Source Lanquage

PL/I

2, Suggestions and Techniques

Not Applicable

PAGE 45

TOPIC F.15 - RETRIEVAL CORRECT COMBANE

A. MODULE NAME

Retrieval, CORRECT Command
Program-ID - NDBCORR
Module-ID - DECORR

Entry Point (DBCORR)

B. ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTION

The CORRECT command is a routine, called by the
RETRIEVAL system, whocse purpose is to allow the
retrieval system user to create certain maintenance
transactions during retrieval. When a user observes an
error during a display, he is able to have any or all
of the fields of a given record displayed and then be
able to specify any deletions, additions, or changes to
those fields. The transactions created are not
executed, but are placed in a transaction data base
which is examined by the data base owner before the
actual maintenance takes place. The calling sequence
is: CORRECT field,key.

D, DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input liles

Not Applicable

c. Input Files

Not Applicable

d. On-line Terminal Entries

A terminal is the most likely source of the

PAGE 4&1

parameters which are passed to CORRECT by
Terminal Support. The parameters available
to the CORRECT command are "key" and
"fieldname". The Terminal Support system
applies default values to the parameters, if
they are available, when no original values
are entered.

Additional terminal entries are requested of
the user. These responses indicate what
alterations, if any, to the field are
desired. These entries take the form of
sub-commands available to the user while
running under control of CORRECT. The
sub-commands are:

ADD data
CANCEL
CORRECT field,<key>
DELETE element
DISPLAY
END
FIELDS
INSERT field,...
REPLACE element ,<element>,olddata<,newdata>
VERIFY

3. Output Data Sets

a. Output Files

The only output file from the CORRECT command
is the transaction data base. This file is a
QISAM data set containing maintenance
transactions from all sources for all data
bases. The fields of the transaction data
base and their format are completely
described in the Dataset Specifications.

b. On-line Terminal Displays

The CORRECT command outputs a formatted
display of the specified field on the
terminal. Each field to be processed begins
on a new screen image with appropriate header
information. Each element of multi-element
fields begins on a new line. No attempt is
made to end lines of the display on word
boundaries. In addition to the display of
the field in question, a prompting message
requesting the action to be taken is issued
in the input area of the screen.

PAGE A I

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PROGRAM REQUIREMENTS

1. Flowchart

See Figure 2

2. Narrative

a. CORRECT

The CORRECT command is called by the
retrieval sub-system at entry point DBCORR.
Any default paramenters which are applicable
are supplied by terminal support.

b. Real Entry

This routine initializes the routines for
handling the exceptional error and interrupt
conditions. Attention interrupts cause the
user to be prompted for a decision. If he
defaults, execution continues from the point
of interruption. Terminal support prompting
errors cause program termination, unless the
error is for input transaction, in which
case, a warning message is issued to the user
and execution continued. Any other errors
cause program termination, following an
appropriate diagnostic message.

cc Main Line

The routine allocates the screen buffers, if
not already done, and obtains the julian date
for time stamping the transactions. The
current retrieval data base is then opened
for input, unless that data base is the
user's transaction data base, in which case,
it is opened for update. The parameters
passed by the user are validated. The user
is prompted for a field name if he failed to

PAGE *5rtLft

enter it initially.

d. Get Record

If necessary, this routine reads a new record
from the input data tase and gets the value
of the key field, the latter necessitated by
the optional sequential mode of operation.
Again, if necessry, the routine reads in the
values for all elements of the field,
maintaining a count of the number of elements
processed. Finally, the routine copies the
input data to a temporary storage area for
the user to process against.

e. Format Screen

This routine, unless running from a
typewriter with the verify option equal to
no, formats and displays the status of the
data most recently referenced by him. It
first constructs a heading, composed of the
record key, data tase name, field name and
element count. It then proceeds to fill the
remainder of the screen with data beginning
at the element indicated by the calling
routine. If the element length is less than
the length of the data portion of the line,
the element is written on a single line
preceeded by the element number. If the
element is too large, the first line is
processed as above, but the remaining data is
split across succeeding lines.

f. Re-prompt

This routine prompts the user for his next
request. It extracts the command keyword,
and if valid, calls the appropriate calling
routine. If any type of error is
encountered, the routine re-prompts for the
correct information.

q. Add Routine

This routine takes the input data and uses it
to create a new element for the field being
processed. If FIELD is key field, then new
record is created. If there is no data
entered, or if the maximum allowable number
of elements has been reached, a diagnostic is
written and processing bypassed. After
processing, that data control is passed to

PAGE 45-9-4q$

Format Screen to display the updated data.

b. Replace Routine

This routine expects four parameters to be
entered, a starting point, an ending point,
an old data value and a new data value. The
starting and ending points are expressed in
terms of element numbers. If the element
numbers are invalid, or if no old data value
is entered, a diagnostic is written and
processinq bypassed. The data is then
searched, character by character, from the
starting point to the ending point, If any
occurrence of the old data value is found,
it is replaced by the new data value. If no
occurrence of the old data value was found, a
diagnostic is written. Otherwise, control is
passed to Format Screen to display the
updated data.

i. Cancel Routine

This routine re-initializes the data in the
field to its initial status when read from
the data base. Control is then passed to
Format Screen.

j. Page Routine

This routine expects one parameter, which it
uses to adjust the current element pointers
to adjust the segment of the data which is
displayed on the screen. The parameter may
be a default for forward paging, a 'B' for
backward paging, a number for a specific
element number. If the data is invalid or
the request cannot be honored, a diagnostic
is written and processing bypassed.
Otherwise, control is transferred to Format
Screen to display the data.

k. Verify Routine

This routine sets the switch that determines
whether the user, operating from a
typewriter, receives a verification display
of the data following each command. The data
entered should be 'YES' for verification or
'NO' for none. If the data is invalid, a
diagnostic is written and processing
bypassed. Otherwise, control passes to
Format Screen.

PAGE 4 Lf i

1. Delete Routine

This routine uses the user's data to decide
whether to delete the entire record, to
delete the field, to delete an element or to
delete a range of elements. If the field is
to be deleted, it is done and control passed
to Format Screen. If the record is to be
deleted, it is done and control passed to End
Routine. If elements are to be deleted, the
routine will accept a list of elements or
element ranges as input. For each, it
analyses the element number to determine its
validity. An invalid element will cause a
diagnostic to be written and further
processing bypassed.

m. Insert Routine

This routine allows the user to specify the
fields of subfile records to be inserted into
the dataples. If no field is specified, a
diagnostic is written and processing is
bypassed. If the previous field's data has
been changed, output Routine is called to
create the necessary transactions. Control
is then passed to the Correct Routine for
further processing.

n. Correct Routine

This routine allows the user to specify the
key of a new record to be processed, the name
of the next field to be processed, or both.
If the previous field's data has been
changed, Output Routine is called to create
the necessary transactions, The routine
first checks for a signed numeric value in
the key operand, and if found, reads the file
sequentially forward or backward to the
desired record. If sequential processing is
not indicated, the rcutine extracts the new
key and the new field name, if present, and
transfers control to Get Record for further
processing.

0o Fields Routine - CALL tBFLDS

This routine displays a list of the field
names for the data tase for the user. It
calls DBFLDS tc extract the field names. It
also checks each field until it has
identified the key field, whose name it

PAGE *sft

maintains separately. It then moves the
field names into the output area, fitting as
many as possible on each line, and displays
them to the user. If more names exist than
may be displayed on the screen at once, the
routine prompts the user for a decision as to
whether he wants to see the remaining names
or to continue correcting.

p. End Routine

This routine processes any transactions
remaining to be written. It closes all of
the files, resets switches, restores the
NASIS status to what it was when the program
was invoked and returns to the calling
program.

F. CODING SPECIFICATIONS

1. Source Language

The NtBCORR program employs the IBM PL/I
programming language. The special extensions of
that language, called DBPL/I and TSPL/I, are
utilized for all access to files and for all
terminal communication, respectively.

2. Suggestions and Techniques

Not Applicable

D
AF TERMINALT I
A L PARAMETERS
BE
AS
S

CORRECT
COMMAND 4 DBCORRW

ST

TERMINAL N
DISPLAYS S
PROMPTS C

Figure 1. I/O Block Diagram

ENTER

PROMPT
FIELD KEY

READ
RECORD

FORMAT
SCREEN

RE-PROMPT

ROUTINE

SUB- NO
COMMAND RETURN

FIELDS END
ROUTINE ROUTINE

ADD REPLACE CANCEL PAGE
ROUTINE ROUTINE ROUTINE ROUTINE

VERIFY DELETE INSERT CORRECT
ROUTINE ROUTINE ROUTINE ROUTINE

Figure 2. Top Level Flowchart

PAGE 44& fqy

TOPC F.16 - CORRECT COMMAND - WRITE TRANSACTIONS

A. MODULE NAME

Program-ID - NDBCORRV
Module-ID - DECOREW

B. ANALYST

Richard D. Graven
Neoterics, Inc.

C. MODULE FUNCTICN

The DBCORRW module is the routine that writes the
transactions for the CORRFCT command to the TRNSCT
file. It is called by the DBCORR module.

D. DATA REQUIREiMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

t. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

d. On-Line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The only output file from the DBCORRW module
is the transaction file. This file is a
QISAM data set containing maintenance
transactions from all sources for all files.
The fields of the transaction file and their
format are completely described in the

PAGE afrS

Dataset specifications.

b. On-line Terminal tisplays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E. PEOGBAM REQUIREMENTS

I. Flowchart

See Figure 2

2. Narrative

a. Output Routine

This routine analyses the data maintained for
the field being trccessed, and for each
element whose data has been changed, creates
transactions to represent the change. The
routine calls write tranplx to actually write
the transactions. The routine handles three
cases, an added element, a deleted element, and
a changed element. Ucn completion, the routine
returnes to its caller.

b. Write Tranplx

This routine performs the actual creation
of transactions, lased upon the data supplied
to it, Upon completicn, It returns to its

caller.

F. CODING SPECIFICATIONS

1, Source Language

The NDBCORRW orogram employs the IBM PL/I
programming language. The special extension of
that language, called TSPL/I is utilized for all
terminal communications.

PAGE 4efr 5

2. Suggestions and Techniques.

Not Applicable

A
T
A
B
A

E

DBCORR DBCORRW

T
R
N
S
C
T

Figure 1. I/O Block Diagram

ENTER

GET NEXT
ELEMENT

LAST YES
ONE * RETURN

NO

M NO

CHANGED A

YES

CREATE
TRANSACTION

WRITE
TRANSCT

A

Figure 2. Program Flowchart

PAGE *6-7

TOPIC F.17 RETRIEVAL DISPLAY COHMAND

A. MODULE NAME

Retrieval, DISPLAY Command (module 2 of 2)
Program-ID - NDBDSPLA
nodule-ID - DBDSPLA

B. ANALYSTS

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

The DISPLAY command allows the retrieval system user to
have designated data for a given set to be displayed on
a terminal. Like the PRINT command, the user may
specify the format of the output as the citation
number, the citation, the abstract, or the full text
for any item contained in a set which has been
previously selected. Optionally, the user may
prespecify a format of his own, using the FORMAT
command, to govern the DISPLAY command. One set-number
is reserved for special purposes in the system.
Set-number 0 is a logical reference to the entire
anchor file. The PAGE command also calls the DISPLAY
command in order to create additional displays,
logically, before and beyond the current one. The
calling sequence is: DISPLAY set-number, format, item,
type or, alternately, DISPLAY citation#, format.

This module is called by DBDSPI via DBINIT to build the
screen images for the DISPLAY requests.

D, DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a, Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

PAGE 618V"-i

The anchor and associated files of a dataplex
will be input to the DISPLAY command. The
complete description of the files in a
dataplex is found in the Data Set
Specification Section of the Workbook.

d. On-line Terminal Entries

A terminal is the most likely source of the
parameters which are passed to the DISPLAY
command. The parameters available to the
DISPLAY command are set or citation number,
format, items, and type. The NASIS system
will apply default values to the parameters,
if they are availatle, when no original
values are entered.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

The DISPLAY command will output a
partially-formatted display of the items in a
set or for a specific citation number. For
sequential formats, each field is started on
a new line, and the key field is always on
the first line below the header information
for a particular display. For columnar
formats, the fields from each record are
arranged across one or more lines in
columns. The content of the display depends
upon the format code entered as the second
parameter.

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COLFORM

The DISPLAY command refers to a COLFORM table
when a columnar format is referenced.

PAGE *-5Z5i

b. USEPTAB

This table contains user-oriented and status
information.

c. FLDTAB

The DISPLAY command refers to FLDTAB to
locate the appropiate sequential (SEQFORM) or
columnar (COLFCRM) format tatle.

d. RETDATA

This table contains data fields unique to the
retrieval sub-system.

e. PLEX

The DISPLAY command uses a DBPL/I file called
PlEX for all of its retrievals from the
dataplex.

f. SEQFORM

The DISPLAY command refers to a SEQFORM table
when a sequential format is referenced.

, PROCESSING REQUIREMENTS

I, Top Level Flowchart

See Figure 2

2. Narrative

a. DBDSPLA

This module is called by the DBDSPL module
via the DBINIT Transient Module Interface
convention; DBDSPLA uses necessary
information from the common structure
DSPLCTL.

b. Build Screen Image

This is a common routine for building a
DISPLAY screen image either for an original
DISPLAY command or for a PAGE command,

For a sequential format, field names are
taken successively from the SEQFORM down to
the number of field names.

PAGE 4705V

In the most general case, each field consists
of multiple elements and each element value
is so long as to require multiple lines of a
buffer. The first line for the first element
of a field is taqged with the fieldname and a
colon. The first line for an element after
the first of a field is tagged with only the
colon. Successive lines after the first for
an element have their tag entirely
suppressed. The degenerate cases of a single
element field and/or an element short enough
to fit on one line of the buffer are handled.
And if the field is null (no data present),
nothing is posted to the buffer at all for
that field name.

Sutfile resident fields are displayed similar
to multiple elements; however, the first
element of the field per sutfile record has
the field name tag duplicated, and a special
heading is displayed (depending on the "type"
parameter) as each new subfile record is
processed.

If the field names are not all processed
before the bottom line of the buffer is
reached, the routine is left in such a state
that it will resume where it left off if
normal forward paging is attempted. But if
the field names are all used, then the
remaining lines are cleared.

For a columnar format, the optional page
number, title, and header lines are copied
into the buffer. Then field names are taken
successively from the CCIFORM, and used to
retrieve the field values which are arranged
across a line of the buffer. If there are
any multiple element fields, futher lines of
the buffer are used for remaining elements
until the record's desired fields have all
been retrieved. If there are any further
records in the set, the next record is read
and the process repeated. When the buffer
is full, the routine is left in such a state
that it will resume where it left off if
normal or skip paging is attempted. But if
the data is exhausted, then the remaining
lines are cleared.

c. Write Screen

Using the full screen mode of output, the

PAGE 4+-5

current screen image is displayed on the
terminal.

d. Return

Do a normal return to the calling routine.

3. Submodules Required

a. DB - data base package

b. PSTRAT - save strategy

c. TS - terminal support package

d. DBSETU - set information package

e. DBILDU - field utilities

SCODING SPECIFICATIONS

1. Source Language

The DISPLAY command is coded entirely with the IBM
PL/I programming language. The DBPL/I language
extension is used to handle all access to the
files in the dataplex. The TSPL/I language
extension handles all instances of communication
with the terminal.

2. Suggestions and Techniques

Not Applicable

TERMINAL
ENTRY

DATA
USERTAB BASE

DBDSPL

FLDTAB

TERMINAL
DISPLAY

RETDATA

DBDSPLA

Figure 1. I/O Block Diagram

BUILD
SCREEN
IMAGE

WRITE
SCREEN

RETURN

Figure 2. Top Level Flowchart

PAGE 44-W.6

TOPIC F.18 - RETRIEVAL FORMAT CCOMlAN

A. MODULE NAME

Retrieval, FORMAT Command (module 2 of 2)
Program-ID - NDBFORMA
Module-ID - DEPORMA.

B. ANALYST

Garth B. Vyman
Neoterics, Inc.

C. MODULE FUNCTION

The DBFORM module is the first FORMAT command routine,
called by the retrieval subsystem, whose purpose is to
allow the retrieval system user to define, revise
and/or display the content and format for subsequent
information retrievals using the DISPLAY or PRINT
retrieval commands. Sequential and columnar formats
may be defined.

The DBFORA module is called ty EBFORM module to handle
the processing of FIELD and HEADER subcommands. Refer
to DBPORM Program Design Specification for further
details.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

d. On-line Terminal Entries

A terminal is the most likely source of the
parameters which are passed to the FORMAT

PAGE 4~4-5i

command by the Terminal Support system. The
fundamental parameters are the format number
and the field names. Default values for the
fundamental parameters are unlikely. The
FORMAT command then accepts the FORMAT
sutcommands and their parameters.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

a. COLFORM

When the FORMAT command processes a new
columnar format, it allocates and initializes
a COLFORM structure and posts its base
address in the COL FORMAT array in FLDTAB.
When the FORMA1 command processes a TITLE or
HEADER sub-command or any other revision to a
columnar format, it updates the appropriate
COL FORM structure. Thus, a COL FORM
structure specifies a columnar format for use
by the DISPLAY and PRINT commands.

b. FLDTAB

The FORMAT ccmmand refers to the DATAPLEX
portion of FLDTAB. The FORMAT command also
posts the SEQ_ ORMAT and COLPORMAT arrays as
it processes new formats.

c. SEC FORM

When the FORMAT command processes a new
sequential format, it allocates and
initializes a SEQ_FORM structure and posts
its base address and field name count in the

PAGE 4r7-5

SEQFORMAT array in FLDTAB. Thus, a SEQ_FORM
structure specifies a sequential format for
use by the DISPLAY and PRINT commands.

d. USERTAB

The FORMAT command checks the
USERTAB.RETRIEVE switch to verify that it is
being called properly.

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2 of DBFCRM Design Specification.

2. Narrative

a. Format

The FORMAT command is recognized by the
retrieval system director module DBINIT which
calls the DBFORM entry point. When a FIELD
or HEADER sutcommand is recognized, the
DBFORMAmodule is called via the DBINIT
Transient Module Interface convention. These
subcommands are described below.

b. Process FIELD command

FLDSPEC parameter values are obtained one by
one from the Terminal Support system and
processed individually. The field names are
checked for existence in the current database
by a call to the field utilities (DBFLDU).
If a field name or rosition is invalid, a
diagnostic is issued and the keyboard
unlocked for re-entry of that field name with
any options or default for that field to be
ignored. Normally, for suequential formats,
the field name is posted in SEQ_ FORM, or for
columnar formats the field name, position
proportionedi if not specified by the user)

and options are posted or updated in
COL FORM.

c. Process HEADER command

If the current format is not columnar, the
HEADER command is cancelled with a diagnostic
message.

A HDRLINE parameter value is obtained from

PAGE 44H

the Terminal Support system, if the user
entered it explicitly, or by assuming the
next relative header line number. The value
is checked for syntax, range, duplication,
and space in COL FOTM.TOP. Any error is
diagnosed and the user allowed to re-enter
the parameter. For a header line deletion,
any lover header line images are shifted up
and COL FORM.TCOPHEADPS is decremented and
control branches to (c.). For a new header
line, any lower header line images are
shifted down and intervening lines blanked in
COL FORB.TOP.LINE and COL FORM,TOP.#BEADERS
is posted. Thus a current header line is
determined for the following processing.

If no HDRSPEC parameter values were entered
explicitly by the user, every column accross
the current header line has its field name
value centered over it and control branches
to (c.).

Otherwise, HrvSPEC parameter values are
obtained one by one from the Terminal Support
system and processed individually. If only a
literal value is given, it is centered over
the next column to the right. If only a
parenthesized field name is given, it is
centered over the column for the field
name. If both a literal value and a
parenthesized field name are given, the value
is centered over the column for the specified
field name. Any syntax, field name, or past
righbtmost column error results in a
diagnostic message allowing the user to
re-enter one value or to default for that
value to be ignored.

3. Submodules required

DBFLDU - field utilities
DEUCHEK - check name routine
GETSFT - get stored format
PUTSFMT - put stored format
PSTRAT - save strategy
TS - terminal support package

F. CODING SPECIFICATIONS

1. Source Language

The FORMAT command is coded in IBM PL/I. The
TSPL/I language extension is used for all

PAGE 47-8-57/4

communication with the terminal.

2. Suggestions and Techniques

The PSTRAT external routine shall be called
whenever a valid command or subcommand with valid
parameters is detected.

Subroutine facilities shall be coded to handle the
general case of re-proportioning columns and
re-centering headers. (DUPCOL, BE PRO COL,
RE HEAD).

TERMINALI .S I
ENTRIES

DBFORM
-FORM

DBFORMA FLDTAB

COL-FORM.

TERMINAL
DISPLAYS

Figure 1. I/O Block Diagram

PAGE 4$'6-r-74

TOPIC G.1 - ACCUMULATION

A. MODULE NAME

Statistics Accumulator
Proqram-ID - NDBACCUM
Module-Ir - DPACCUM

B. ANALYST

James A. lesley
Neoterics, Inc.

C. MODULE FUNCTION

Primarily, this module is used to accumulate the
maintenance statistics on those data bases vhich have
already been loaded. This is part of the
initialization process for the usage statistics
function.

This program reads an existing data base anchor file
and accumulates the number of records on it. Then, it
posts this record count to the STATIC file.

D. DATA REQUIREMENTS

1. I/O Elock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The data base vhich is to have the statistics
accumulated, and the STATIC file.

d. On-line Terminal Entries

Not Applicable

PAGE 48*577

3. Output Data Sets

a. Output Files

The STATIC File

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

4. Reference Tables

Not Applicable

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

This program is relatively simple and the
executicn time should be small. Therefore, any
serious errors will output a simple message and
abend the job.

The message is as follows:

ERROR ON $01 OF $02.

Where:
$01 is the ONTILE,
$02 is the CNCCDE.

The program will accept the data base name as a
parameter and will proceed to count the anchor
files records. When this task is completed, it
will open the STATIC file for update and post the
record count.

The posting of the STATIC data base assumes that
no record for this data ase currently exists.
Therefore, if an error occurs on the LOCATE
Statement for the posting, the new record is
posted over the existing one if that is the error,
otherwise the job is terminated. The key's value
for the locate statement is as follows:

PAGE 4&-1

A value of '0' concatenated to the data base
na Jggz~F il witb ,lto 32 characters.

The field 'ANCCUNT' is posted with the number
of anchor records.

The field 'MAINDATE(1)' is posted with the
jobs run date, i.e., this is assumed to be
the creation date for statistics.

The field 'TOTAL RUN' is posted with a '1'.

The field 'TEANCNEW' is posted with the
number of anchcr records.

The following fields are posted to 'O':
'TCTALTRN', 'TRANCDEL', 'TRANCUPD',
'TRINVNEW' , 'TRINDEI', 'TRINVUPD',
'TTSUBADD', 'TPSUBDEL', and 'TRSUBUPD'.

F. CODING SPEICIFCATIONS

1. Source Language

As much as possible of the DBACCUM module is coded
in the IEI programming language PL/I. The input
and output coding for access to files in a data
base is handled through an extension to that
language known as DBPL/I.

2. Suggestions and Techniques

It is important to remember that the executive
error '99' indicates an end of file condition.
Special attention is made for the handling of the
data base executive errors.

DATAPLEX
ANCHOR
FILE

STATIC
PARAMETER DBACCUM STATIC

FILE
PLEX NAME

Figure 1. I/O Block Diagram

DBACCUM ERROR

OPEN ANCHOR
DATAPLEX BY
PARAMETER ABEND

NAME

READ A E.O.F.
RECORD

,, OPEN
STATIC

COUNT =
COUNT+1

LOCATE
THE

RECORD

POST
FIELDS,
CLOSE

SEND

Figure 2. Top Level Flowchart

PAGE 4

TOPIC G.2 - REPORT PRINT

A. MODULE NAME

Print the Retrieval Statistics
Program-ID - NDBPRNTR
Module-ID - DBPRNTR

B. ANALYST

Edward J. Scheboth, Jr.
James A. Wesley
Neoterics, Inc.

C. MODULE FUNCTION

The purpose of this program is to present a detailed
listing of the contents of the STATIC file pertaining
to retrieval statistics. Summaries of various germane
items are made as the module develops the required
report.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The STATIC file, (for full details on this
file see Section III of the Development
Workbook),

d. On-line Terminal Entries

Not Applicable

3. Output rata Sets

a. Output Files

PAGE 401

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

The retrieval statistics' report, (for full
details of this report (listing) see Section
III of the Development workbook).

4. Reference Tables

Not Applicable

E. PROCESSING RBQUIRE~ENTS

1. Flowchart

See Figure 2

2. Narrative

This module performs the fcllowing logic in order
to produce the retrieval statistics' report

a. Open the STATIC file for sequential input
(use DBPL/I).

b. Read the STATIC file sequentially record by
record and while reading, construct from the
current information on the STATIC file the
required listing.

c. Output the print file required to produce the
retrieval statistics' report.

d. Close all files: Terminate.

Note: It will be necessary for this program to
accumulate various information so that it
can output the summary of retrieval
statistics, representing all of the
statistics on the STATIC file.

F. CODING SPECIFICATIONS

1. Source Language

As much as possible of the DBPRNTR module is coded
in the IBM programming language PL/I. The input

PAGE HS

and output coding for access to files in a data
base is handled throuqh an extension to that
language known as DEPL/I.

2. Suggestions and Techniques

Refer to Section III of the Development Workbook
for all data set specifications and all data base
executive errors.

FILE

DBPRNTR

RETRIEVAL
STATISTICS
REPORT

Figure 1. I/O Block Diagram

PAGE 441

TOEC G.3 - USAGE STATISTICS UPDATE

A. MODULE NAME

Update Maintenance Statistics
Program-ID - NDBUPDST
Module-ID - DEBUPDST

B. ANALYST

Edward J. Scheboth, Jr.
James A. Wesley
Neoterics, Inc.

C. MODULE FUNCTION

This program updates the statistics file (STATIC) with
the maintenance statistics from the load/create program
(DBLOAD) or from the maintenance mainline (DBMNTN),

D. DATA REQUIRENENTS

1. I/O flock Diagram

See Fiqure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

The STATIC Dataplex

d. On-line Terminal Entries

Not Applicable

3, Output Eata Sets

a, Output Files

The STATIC File

PAGE 49---_j

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

Not Applicable

4. Reference Tables

Not Applicable

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

The parameters are passed via standard PL/I
procedure/procedure linkage key calls from DBMNTN
and DBLCAD.

The parameters which are passed are as follows:

a. Calling program identifier character 2.
First Character

C = first call.
M = subsequent call.

Second character.
L = called from LCAD.
anything else signifies - called from
elsewhere.

b,. File being updated.

c. Number of new anchor records, character 6.

d. Number of deleted anchor records, character
6.

e. Number of updated anchor records, character
6.

f. Number of new subfield records, character 6.

g. Number of deleted subfile records, character
6.

h. Number of updated subfile records, character
6.

PAGE a 3-5-

i. Number of new inverted records, character 6.

j. Number of deleted inverted records, character
6.

k. Number of updated inverted records, character
6.

The load/create module (DBLOAD) invokes this
module only once, and this is at the end of the
create run. Therefore, this module opens the
STATIC file for direct (update or output) and
locates the new record. The data is put and the
file closed.

The final call from the maintenance mainline will
have an 'F' posted to the calling program
identifier.

If the updating of the STATIC file is successful,
a 'G' is posted to the calling program identifier
upon return; whereas, if the results are not
successful, a 'B' is posted.

If the results of the attempted posting are bad,
the calling programs will resolve the disposition
of the non-posted data.

The details of the contents of the STATIC file can
be found in Section III of the Development
Workbook.

The following illustrates the parameters passed
and the associated fields which are updated; they
are in the form "parameter - static field name":

a. Maintenance date - MAINDATE

b. Number of new anchor records - TRANCNEW

c. Number of deleted - TRANCDEL

d. Number of undate - TRANCUPD

e. Number of new subfile records - TRSUBNEW

f. Number of deleted - TESUBEL

g. Number of updated - TRSUBUPD

h. Number of new inverted records - TRINVNEW

i. Number of deleted - TRINVDE1

PAGE 494 52'

J. Number of update - TRINVUPD

k. Calling program identifier - *-none-*

It is important to remember that there is a one
for one correspondence between all of the
previously mentioned STATIC file fields, For
Example:

If NAINDATE = '03/16/70' and this is the
actual date of the maintenance run, then if
the PAINDATE value of '03/16/70' is the third
element in the variable length field, then
all updates to the other elemental fields of
the record are made to the third element.

The table which follows will help to
illustrate this more clearly.

MAINDATE 01/16/70 02/16/70 03/16/70 null

TRANCNEW 9 3 1
TRANCDEL 18 4 1
TRPANCUPD 3 7 1
TRSUBNEW 7 9 1
TRSUEDEL 3 12 6
TRSUBUPD 1 9 2
TRINVNEW 16 3 1
TRINVDEL 4 4 1
TRINVUPD 12 7 1

The fields we are concerned with are: MAINDATE,
TPANCNEW, TRANCDEL, TRSUBNEW, TESUBDEL, TRSUBUPD,
TRANCUPD, TRINVNEW, TRINVDEI, TPINVUPD.

These fields are all variable length fields with
multiple fixed length elements, treated as 13
element arrays. The first element in the array is
used as an accumulator. Elements 2 through 13 are
used to represent individual maintenance runs.

This is simple enough--when this module is called
from DBMNTN, it simply locates the maindate which
is the same as the parameter and does the posting
into that given element.

The question is what does this module do when it's
called for the first time from the maintenance
program (DBMNTN) and the date is not equal to any
of the posted dates and all 13 elements have data
so that there is no additional elemental slot
where the data can be placed.

PAGE 4*9-1.

The solution is as follows: First, the second
elemental slot is 'REPUT' to null. Which causes
the file executive to autcoatically slide all of
the other elements (loqically). Then, the new
maintenance data will be 'PUT' as the thirteenth
element.

F. CODING SPECIFICATIONS

1. Source Language

As much as possible of the DBUPDST module is coded
in the IBM programming language PL/I. The input
and output coding for access to files in a file is
handled through an extension to that language
known as DBPL/I. All terminal communication is
handled through the terminal support preprocessor
TSPL/I.

2. Suggestions and Techniques

Refer to Section IIT of the Development Workbook
for all data set specifications and all file
executive errors.

MODULE

DBUPDST

STATIC
FILE

Figure 1. I/O Block Diagram

DBUPDST

Y
CREATE

N ANALYZE

PARAMETERS
AND

VALIDATE

ANALYZE
SUMS
AND

VALIDATE

LOCATE NEW
RECORD

POST COUNT
DATA FIELD

RECOR
AND POST
COUNT, D
FIELDS

POST THE
COMMAND
COUNT
FIELDS

RETURN
L

Figure 2. Top Level Flowchart

PAGE *98Z

TOPIC G.4 - CLOCK ROUTINES

A. MODULE NAME

Clock Routines
Program-ID - NTIMERS
Hodule-ID - TIMERS

B. ANALYST

Edward J. Scheboth, Jr.
Neoterics, Inc.

C. MODULE FUNCTION

This module initializes two internal clocks, one for
CPU time and the other for CONNECT time. These clocks
may be read at a later time to provide the elapsed time
plus initial values.

D. DATA REQUIREMENTS

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Fiqure 1

2. Narrative

In the START entry, the initial values are
assigned to the total clock value and an even odd
pair of clocks are started even (0) with task
option ODD(1) with real option and two counters
are set with these values.

In the READ entry, a flag is set to on at entry.
The clocks are read and the initialized totals are
updated. The clocks are stopped and restarted to
prevent expirationc, the values are provided to
caller the 0-1 pair of clocks started, the
indicator turned off and return made to caller.

In the STOP entry, the two counters of clock
numbers are deducted by 2 and each pair of active
clocks stopped.

If either clock should expire, the expiration
routing post full values to total and starts a
new clock with value +2 and returns.

PAGE 4

F. CODING SPECIFICATIONS

1. Source Language

Assembler

2. Suggestions and Techniques

Not Applicable

PAGE ~ix46

TO1C G.5 - STATIC REPORT

A. MODULE NAME

Maintenance Statistics' Report
Program-ID - NDBPRNTM
Module-ID - DBPRNTM

B. ANALYST

Edward J. Scheboth, Jr.
James A. Wesley
Neoterics, Inc.

C. MODULE FUNCTICN

This program opens and reads the STATIC file
(sequential input); analyzing, accumulating and
formatting (fcr printing) the maintenance statistics'
information which is currently posted. The end result
is a maintenance statistics' report. It has the added
function of snapshot dump and re-initializing the
seven variable element fields which are the running
totals of the maintenance statistics.

D. DATA REQUIREMENTS

1, I/O Elock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b, Punched Card Input Files

Not Applicable

c. Input Files

The STATIC file (for detailed and complete
information on this file refer to Section
III of the Development Workbook).

d. On-line Terminal Entries

Not Applicable

PAGE ~-4-

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

c. Formatted Print-outs

The maintenance statistics report (for
complete detailed information on this listing
refer to Section III of the Development
Workbook).

4. Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

This module performs the folloing logic in order
to produce the maintenance statistics' report:

a. Opens the STATIC file for sequential input
(use DBPL/I).

b. Read the STATIC file sequentially, record by
record, and while reading constructs from
the current information on the STATIC file,
the required listing.

c. Outputs the print file required to produce
the maintenance statistics' report.

d. Snapshots the ten variable element fields if
they are full.

e. Close All Files: Terminate.

Note: It is necessary for this program to
accumulate various information so that it
can output the summary of maintenance
statistics.

PAGE -S-

•F CODING SPECIFICATIONS

1. Source Language

As much as possible of the DBPRNTM module is coded
in the IBM prograrminq language PZ/I. The input
and output coding for access to files in a file is
handled through an extension to that language
known as DBPL/I. All terminal communication is
handled through the terminal support preprocessor
TSPL/I.

2. Suggestions and Techniques

Refer to Section III of the Development Workbook
for all data set specifications and all file
executive errors.

FILE

DBPRNTM

MAINTENANCE
STATISTICS
REPiure .I/O Blok Diaram

Figure 1. I/O Block Diagram

OPEN
STATIC

REPORT

READ
STATIC
FILE

ND 0 Y
MAINT. EOJ

FORMAT
AND
PRINT A

PAGE

Figure 2. Top Level Flowchart

PAGE &43--

TOErC G.6 - RETRIEVAL STATISTICS DIRICTOR

A. MODULE NAME

Retrieval Statistics Director
Program-ID - NDBSTAT
Module-ID - DBSTAT

B. ANALYST

James A. Wesley
Neoterics, Inc.

C. MODULE FUNCTION

This module is the heart of the retrieval statistics.
It has an entry point for each retrieval module
included in the statistics.

D. DATA REQUIREMENTS

i. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

The Static Dataplex.

b. On-line Terminal Displays

Not Applicable

PAGE 5

c. Formatted Print-outs

See CHKPT dump

d. Punched Card Output Files

Net Applicable

4. Reference Tables

The MFCE is used to convert inverted indices to
data base file names.

E, PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

mainline:

The INIT entry checks to see if there was a crash
during the last session by the existence of the
ONES record and then write one if there wasn't one
or after Checkpoint Routine deletes it. INIT
initializes statistics that like INIT in the
command system setting up the necessary tables or
pointers for later use.

Each command entry, one each for EXPAND, SELECT,
SEARCH and CORRECT, pushes its information,
command type, NASISID OWNEFID and fill, into the
stack and then checks to see if it is time to
update the statistics by checking the command
count and entry count for critical level.

The DBSTATF entry call cn termination of a
session, just indicates that this is to be the end
and provides strategy information and branches to
the PUTSTAT routine.

The DBSTATD entry deletes this strategy from the
statistics if it is there.

The PUTSTAT routine always updates the CPU and
connect time by calling the TIMERS routines for
their values. It also always pops the command
stack and updates each command count and the
set-date for the specified file. The stack is a
FIFO stack, a one dimensicnal structured array.
If this is a DBSTATF entry, then the strategy

PAGE Ot-

information 'STRATSTR,' and 'STRATLEN' and usage
information 'LASTDATE' are complete updated.
Finally, for the DBSTATF entry to update the
storage allocation is freed and the ones record
deleted from STATIC.

Checkpoint:

The initialization entry point of DBSTAT enters
the checkpoint routine when it detects the
presence of a record in the STATIC file with a key
that has all 'bits on'. This condition indicates
that the system crashed, during the last NASIS
command session, before job completion. The
initialization module writes the record with the
key of all 'bits on' (x'FF') to the STATIC file,
either after return from check pointing or upon
detection of no record.

The initialization module enters the checkpoint
routine after a normal terminal session has been
completed.

The NDBCHKPT programs operation is relatively
simple. It will read sequentially from the
beginning to the end of the STATIC file and
perform the checkpoint function. Upon completion,
it will delete the record that had all 'bits on'
for the key's value.

It should be mentioned at this point that the data
base executive returns a '99' value as an error
code when the end of data is encountered. For the
other data base executive errors, please refer to
the data set specs.

If an error is detected while trying to open the
STATIC file for update (direct), this program will
abend. It will be attempted automatically at the
beginning of the next terminal session.

The checkpoint function itself is relatively
simple. It consists of looking at the record,
determining if it needs to be re-initialized and
then either re-initializing and printing it or
getting the next record. The details of this
process are as follows:

There are five fields whose field names are
#EXPANDS, #SELECTS, #SEARCHS, #CORRECTS, and
SESSDATE.

These fields are treated as 13 element arrays.

PAGE 5S9-

When there is data in existence in all 13 of these
elements, it is time to re-initialize the record
so that the data from all subsequent NASIS command
sessions can be posted.

The first element of these fields represents an
accumulator. The second through the thirteenth
elements represent the data from individual NASIS
command sessions.

When the second through the thirteenth elements
have actual data accumulated in them, then, this
program will add each of the elements (2-13)
common to a particular field into the first
element. The second through thirteenth elements
will then be 'nulled'. The snapshot will be
printed for this record upon detection of all 13
elements having data and before the
re-initialization.

The next NASIS command session will begin
accumulating data in the second element. The
first element will NEVER te deleted.

F, CODING SPECIFICATIONS

1. Source Language

PL/I and DBPL/I

2. Suggestions and Techniques

Not Applicable

Figure 1. I/O Block Diagram

COMMAND - - EXPAND, B
ENTRY SELECT,

E N T R YC O R R E C T ,ENTRY TSEARCH

PUSH
COMMAND (A) UPDATE

AND PARAMS STRATLEN

OPEN IN STACK
STATIC

UPDATE
iS CPU AND

CENTRIE CONN. TIME UPDATE

IMIT ON STATIC STRATNME
IS

ONES N

UPDATE

Y COMMAND STA TAT

CLOSE ENT4Y
STATIC UPDATEFOR EACH

COMMAND
INDICATE IN STACK UPDATE

STHIS IS 1 LAST DATE

PERFORM FINISH
CHECKPOINT

FUNCTION ARE Y
MORE IN CLOSE

A STACK STATIC
SN PERFORM

PEN

DELSTRAT FINIS B
S<INDICATED

FREE
ALLOCAT IONSONEN

INITIALIZE STRAT.

I. DIE ON
AND RETURN

RETREU
eONESi

RETURNu RETRL

PAGE 44-2'

TOFIC H,1 - EXPLAIN FACILITY

A. MODULE NAME

Program-ID - NDBEXPL
Module-ID - DBEXPL

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

This module allows the user to display the explanation
of a message or term, the origin of a message or the
responses to a prompt, that has appeared on the screen,
or, the text of any of the standard prompting messages
on the message file.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

d. On-line Terminal Entries

This module receives its input in the 'f~rim'of
parameters passed with the EXPLAIN or PROMPT
commands.

3. Output Data Sets

a. Output Files

Not Applicable

PAGE 51i-4j2?L

b. On-line Terminal Displays

This module displays the requested
information for the user on the terminal.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

Not Applicable

E PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBEXPL1

Upon entry, the program analyzes the
parameter to determine paging, PROMPT, or
EXPLAIN processing. If paging, the
processing continues at label DBEXPLP (see
below). If PROMPT, processing continues at
label DBEXPL2 (see below). Otherwise, the
program initializes the variables that
control execution and the displaying of data
to the user. It also sets up the mechanism
by which paging is to be accomplished.

Next the program prompts for the OPTION and
MESSAGE parameters required for the EXPLAIN
function. It verifies that the option
selected is valid, and if so, branches to the
appropriate routine.

For simple explains, i.e., message
explanations, the OPTION is treated as an
index, verified, and the line number set to a
value of 100. If the OPTION is not a valid
index, the request is treated as a term
explanation. The OPTION is then treated as a
qualified term and used to construct the
message key which is used to locate the
term's explanation. For response

PAGE -r

explanations the live number is set to a
value of 400.

In each of the above instances, control is
passed to a routine which attempts to read a
data record. If successful, the record is
written to the screen and the process
repeated, until the data has been exhausted,
or the screen filled. At this time, the
paging controls are set, the screen is
displayed to the user and the program is
terminated. If no data was found, the
routine branches to an error routine which
displays a message to the user and terminates
the program.

If the original request was for a message
origin, the OPTION is treated as an index,
and if valid, the appropriate message key is
obtained, displayed to the user, and the
program is terminated.

b. DBEXPL2

At this label, the program initializes the
varriables that control execution and prompts
for the MESSAGE parameter. It then prompts
for the INSERTS parameter list.

Once complete, the program attempts to
display the message indicated with the
specified inserts.

c. DBEXPLP

At this label the program re-initializes the
variables that control execution and the
displaying of data to the user. If the
paging status data indicates that more data
remains, the program uses this data to
restore the proper program status and then
branches to the routine which posts data to
the screen, If no data remains to be
displayed, the program simply terminates.

F, CODING SPECIFICATIONS

1. Source language

The module is written using the IBM PL/I
language.

2. Suggestions and Techniques.

kmPAjPAG1 BLANK NOT FILMED

DBEXPL

MESSAGE

LIBRARY

Figure i. I/O Block Diagram

LO00O LINE 400 TR

DBEXPL

PAGING yL 2

PROMPT-I

INITIALIZE
SFOR

EXPTO ELAPLAIN INTO BE

PROMPT
FOR

PARAMETERS

POSITION TO I POSITION TO LOCATE GET
LINE loo LINE 400 TERM MESSAGE
TO EXPLAIN TO EXPLAIN '.TO BE -ORIGIN

MESSAGE RESPONSE EXPLAINED

GETRORS

DATE LINE

ANY Y DISPLAY DISPLAY

? MESSAGEORIGIN

PUT
DATA

LINE

CREEN y SAVE
FULL STATUS DATA -

Fi~rlp ?A Tnn T-r-l Fln rh -I

3 2

INITIALIZE INITIALIZE
FOR FOR

PROMPT PAGING

ANY N
PROMPT MORE DATA 1

FOR
PARAMETER

RESTORE
WRITE STATUS DATA
THE

MESSAGE

EXIT

Figure 2B. Top Level Flowchart

PAGE 519-5

TOPIC H.2 - STRATEGY INTERFACE

A. MODULE NAME

Program-ID - NDBSTRT
Module-ID - EESTPT

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

This module serves as an interface between the strategy
data set service routines and the rest of the NASIS
system. In addition, it is the module which performs
the functions specified by the FORMATS and STRATEGY
commands, i.e., the listing of format and strategy
names, the listing of strategies and the deletion of
strategies.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Not Applicable

d. On-line Terminal Entries

When serving as the processor for the FORMATS
and STRATEGY commands, the program reads in
the command and parameters specified by the
user to invoke those commands.

3. Output Data Sets

a. Output Files

PA GE- -

Not Applicable

b. On-line Terminal Displays

When serving as the processor for the FORMATS
and STRATEGY commands, the program produces
the following formatted screen images,

1. Format names display

2. Strategy names display

3. Strategy display

c. Formatted Print uts

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

USERTAB-is used to obtain the NASIS-id and to test
the task status as represented by the various bit
switches.

FLDTAB -is used to reference the formats currently
defined for this user.

E, PROCESSING RECUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. GSTBAT

At this entry point the program initializes
the parameter lists necessary to obtain a
line from the strategy data set, and calls
TSGETRG to do it. If an error occurs, and it
is the first error for that region, a
diagnostic message will be written to the
user. Otherwise, the program simply returns
to the caller.

b. PSTAT

At this entry point the paragram initializes

PAGE &2i

the parameter lists necessary to write a line
to the strategy data set, including the
generation of the strategy or format name.
It then calls TSPUTRG to perform the write.
If PSTRAT is called and the TESTMODE, RERUN
or RESTACT flags are set, the program
immediately returns to the caller. If an
error occurs while writing out the record, a
diagnostic message is written to the user and
the TESTMODE switch is turned on. The
program then returns to the caller.

c. CSTRAT

At this entry point the program initializes
the parameter lists necessary to change the
name of a region. It then calls TSCHGRG to
accomplish the change. If any errors are
encountered, a diagnostic message is written
to the user. The program then returns to the
caller.

d. DSTRAT

At this entry point the program initializes
the parameter lists necessary to delete a
region of the strategy data set. It then
calls TSDELRG to perform the deletion. If
any errors are detected, a diagnostic message
is written to the user. The program then
returns to the caller,

e. DBSTRT1

At this entry point the program initializes
itself to process the strategy command. It
reads in the OPTION and STRATEGY parameters.
The program then branches to the routine used
to process the type of request specified by
the OPTION parameter. If that parameter is
not valid, the program writes a diagnostic
message and terminates immediately.

If the user requested a strategy deletion,
the program calls TSDELRG to delete the
strategy specified. If an error occurs, a
diagnostic message is written to the user.
The program then checks for any additional
names, and processes each in the same way.
When all processing has been completed the
program terminates.

If the user requested a listing of the

PAGE SH

strategy names, the program initializes the
screen and paging control data. It then
repetitively calls TSGETSN to retrieve the
names of the strategies. As each name is
obtained, it is added to the output line and
the line is written to the screen. When the
screen is filled or when the strategies names
are exhausted, the screen is displayed to the
user, the paging status data is posted and
the program is terminated.

If the user requested a listing of a
particular strategy, the program initializes
the screen and paging control data. The
first strategy name specified is selected,
and TSGETRG is repetitively called to obtain
the lines comprising the strategy. Each line
is posted to the screen. When the screen is
filled or when the last line has been
written, the screen is displayed to the user,
the paging staters data is posted and the
program is terminated. The paging status
data must indicate when a strategy has been
completely listed, so that the next name from
the list can be used.

f. DBSTRT2

At this entry point the program initializes
itself to display the names of the formats
available to the user. It initializes the
screen and the paging status data. The
program then extracts the identifiers for all
of the formats currently specified in the
format tables. It then calls TSGETFN to
retrieve the name of a stored format. It
places the names of the formats on a line and
writes the line out to the screen. The names
are processed alphabetically, and as each
stored format name is processed, a new one is
read in. Stored formats that are also
present in the format tables are only shown
once. When the screen is filled, or when the
list of names is exhausted, the screen is
displayed to the user, the paging status data
is posted and the program is terminated.

g. DBSTRTP

At this entry point the program
re-initializes itself to the status saved
before the last termination. If more data
remains to be displayed, the program branches

PAGE 4 5-363

to the proper routine to produce the next
display screen. If nc more data remains, a
diagnostic message is written to the user and
the program is terminated.

F. CODING SPECIFICATIONS

1. Source language

The module is written using the IBM PL/I
language.

2. Suggestions and Techniques

Not Applicable

YSIN'EIED
DBSTRT

SYSOUT

Figurel 1. 1/O Block Diagram

GSTRAT PSTRAT

INITIALIZE INITIALIZE

GET Y RROR N

DATA LINE SWITCHDATA LINEFiur 2. o DATA LINE

/
ANY
RRORS FIRST WRITE

? ERROR MESSAGEI ERRORS

EXIT
SET

ERROR
SWITCH

CSTRAT DSTRAT

INITIALIZE INITIALIZE

CHANGE DELETE
REGION REGION

ERRORS 2

Figure 2A. Top Level Flowchart

PAGE 5t#-i

TOFIC H.3 - STRATEGY ASSEMBLER ROUTINES

A. MODULE NAME

Program-ID - NTSTRAT
Module-ID - TSTRAT

B., ANALYST

Connie D. Becker
Neoterics, Inc.

C. MODULE FUNCTION

These routines act as the assembler service routines
for the strategy library. They permit the retrieval,
modification and storing of the saved strategies and
formats.

D. DATA REQUIREMENTS

1. I/O flock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Strategy data set - is used for input for
both stored strategies and stored formats.

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

Strategy Data Set-is used for output for both
stored strategies and stored formats.

b. On-line Terminal Displays

PAGE 4X4-54

Not Applicable

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

USERTAB-is used to obtain the NASIS-ID.

E. PROCESSING REQUIREMENTS

1. Top Level Flovchart

See Figure 2

2. Narrative

a. TStELRG

At this entry point the program initializes
itself to delete a strategy or format region.
It opens the strategy data set, if necessary,
and extracts the region name passed by the
caller. The program then proceeds to delete
the region, one line at a time. If any
errors are encountered, the region name is
set to null. The program then returns to the
caller.

b. TSGETRG

At this entry point the program initializes
itself to get a line from a strategy or
format region. It extracts the parameter
passed by the user, and if a null line number
is passed, sets up to read the first line of
the region. If the high order bit of the
line number is off, it sets up to read the
line following that indicated by the line
number. Otherwise, it positions the file to
the line number passed.

The program then attempts to read the line
requested. If successful, it posts the line
number, posts the data (with trailing blanks
removed) and returns to the caller.

If an error occurs, the program sets the

PAGE -457-/

region name to null before returning.
Likewise, if an end-of-region occurs, the
line number is set to null before
returning.

c. TSPUTRG

At this entry point the program initializes
itself to put a line to a strategy or format
region. It opens the strategy data set, if
necessary, and extracts the region, line
number and data parameters passed by the
caller. If the line number is null, it sets
up to add the line at the end of the region.
In any case, it Tositions the file to the
proper region and live within the region.
The program then attempts to write out the
new line from the data passed by the caller.
If successful the program simply returns to
the caller. If an error occurs, the program
sets the region name to null before
returning.

d. TSCHGRG

At this entry point the program initializes
itself to change the name of a strategy or
format region. It opens the strategy data
set if necessary, and extracts the old and
new region names passed by the caller.

The program firsts attempts to delete any
existing region with the new region name. If
an error occurs, other than region unknown,
the program terminates and sets the old
region, reads a line, positions itself to the
new region and writes out the live. This
process is repeated until all of the data
lines have been copied. If any errors occur,
the new region is deleted, the old region
name is set to null and the program returns
to the caller. If no errors have occurred,
the program deletes the old region and
returns to the caller.

e. TSGETSN

At this entry point, the programs initializes
itself to get a strategy region name. It
opens the strategy data set, if necessary,
and extracts the strategy name passed by the
caller. If the name is null, the program
sets up to get the first strategy name.

PAGE -4

Otherwise, it sets up to get the strategy
name following that passed by the caller.

The program then attempts to read a line from
the strategy data set. If successful, it
extracts the region name and passes that back
to the caller. If an.error occurs, or if an
end-of-file is sensed, the region name is set
to null and the program returns to the
caller.

f. TSGETFN

At this entry point, the program initializes
itself to get a format region name. It opens
the strategy data set, if necessary, and
extracts the region name passed by the
caller. If the region name is null, the
program sets up to get the first format name.
Otherwise, it sets up to get the format name
following that passed by the caller.

The program then attempts to read a line from
both data sets. If an error occurs, or if
both files indicate end-of-file, the region
name is set tc null and the program returns
to the caller. Otherwise, the program
compares the region names of the two lines.
It posts the name, lowest in value, in the
region name and returns to the caller.

F, CODING SPECIFICATION

1. Source language

The module is written using the OS 360 Assembler
language

2. Suggestions and techniques

Any output operation to the strategy data set
results in the temporary closing of the data set,
to ensure data set integrity in the event of a
system crash.

PAGE -5-3

TOEC H.4 - USER VERB TABLE

A. MODULE NAME

Program-ID - NDBUSER
Module-ID - DBUSER

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

This routine uses the currently defined verb table to
locate any user defined commands for that table. If
any have been defined, they are appended to the list
already existing in the table.

D. DATA REQUIREMENTS

1. I/O Block Diagram

Not Applicable

2. Input Data Sets

a, Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

C. Input Files

Not Applicable

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

Not Applicable

PAGE 536- 5

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

4. Reference Tables

VERETAB

E. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 1

2. Narrative

Upon entry, the program tests for the presence of
a VERBTAB, If none is found, it exits
immediately. Otherwise, the program extracts the
default symbol from the table and gets the default
value for that symbol.

The program then begins analyzing the data, until
none remains, at which time it returns to the
caller. The data is expected in command-name and
entry pcint pairs. Each pair is extracted from
the data, analyzed for valid construction and then
posted to the next available slot in the table.

If there are any syntax errors, invalid names, or
if the table is filled, the program will return to
the caller, bypassing the remaining entries.

F. CODING SPECIFICATIONS

1. Source Language

The module is written using the IBM PL/I
language.

2. Suggestions and Techniques

Not Applicable

PAGE 4f 36

TOEC H.5 - USER PROFILE ROUTINE

A. MODULE NAME

Program-ID - NDBPRO
Module-ID - EPRO

B. ANALYST

John A. Lozan
Neoterics, Inc.

C. MODULE FUNCTION

This module performs the processing necessary for the
implementation of the PROFILE, SYNONYM, DEFAULT,
SYNONYMS and DEFAULTS commands.

D. DATA REQUIREMENTS

1. I/O Block Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable

d. On-Line Terminal Entries

The program prompts the user for the
parameters required by the various
commands.

3. Output Data Sets

a. Output Files

Not Applicable

b. On-line Terminal Displays

PAGE i6954 7

The display of the user's defaults and
synonyms produce formatted terminal
displays.

c. Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

USERTAE-the program extracts the user's NASIS-id
from the user data table.

., PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a. DBPRO

At this entry point the program analyzes the
parameter value to determine the command to
be processed; the appropriate label below is
branched tc for further processing.

b. DBPFOF (PROFILE)

At this label the program simply calls TSPROF
to write out a copy of the user's current
profile. If any errors are detected, an
appropriate diagnostic message is written to
the user the program then terminates.

c. DBDEF (DEFAULT)

At this label the program initializes itself
to process defaults. It repetitively
prompts for data and calls TSPDEF to process
the request. If any errors are encountered,
an appropriate diagnostic message is written
to the user. The program then terminates.

d. DBSYN (SYNONYM)

At this label the program initializes itself
to process synonyms. It repetitively

PAGE

prompts for data and calls TSPSYN to process
the request. If any errors are detected, an
appropriate diagnostic message is written to
the user. The program then terminates.

e. DBDEU S (DEFAULTS)

At this label the program initializes itself
to display the data values corresponding to a
set of default symbols. The program also
initializes the screen and paging control
data. The program then attempts to read in
the list of symbols. If no data was entered,
the program sets up to display all of the
default values. Otherwise it saves the list
of symbols entered.

The program then repetitively calls TSGDEF
for each entry in the list, to obtain its
default value. The values are formatted and
posted to the screen. When the screen is
filled, or when the list of names is
exhausted, the program displays the screen to
the user, posts the paging status data and
terminates.

f. DBSYNS (SYNONYMS)

At this label the program initializes itself
to display the time values for a set of
synonym terms. The program also initializes
the screen and the paging control data. The
program then attempts to read in the list of
symbols.

If no data was entered, the program sets up
to display all of the synonym values.
Otherwise, it saves the list of symbols
entered.

The program then repetitively calls TSGSYN
for each entry in the list, to obtain its
time value. The values are formatted and
posted to the screen. When the screen is
filled, or when the list of names is
exhausted, the program displays the screen to
the user, posts the paging status data and
terminates.

g. DBPFOPG (PAGE)

At this label the program re-initializes
itself using the paging status data. If

PAGE 5*+

data remains, the program branches to the
proper routine to produce the next screen
image. Otherwise, the program writes a
diagnostic message and terminates.

F. CODING SPECIFICATIONS

1. Source Language

The program is written using the IBM 360 PL/I
Language.

2. Suggestions and Techniques

Not Applicable

SYSIN

DBPROa

SYSOUT

Figure 1. 1/0 Block Diagram

DBPRO PROFILE DEUL YNONY GING

WRITE

OUT INITIALIZE INITIALIZE
PROFILE

ANY
ERRORS PARAMETERS GET

PARAETERS PARAMETERS

WRITE POST POST
MESSAGE DEFAULT -SYNONYM

EXIT

INITIALIZE

EF ULTS Y

SYNONYMS B

Figure 2Z. Top Level Flowchart - DBPRO

SDEFAULTS YNONYMS EXIT

INITIALIZE INITIALIZE

GET GET
PARAMETERS PARAMETERS

A B

GET GET
DEFAULT SYNONYM
VALUE VALUE

NDOF Y END OF Y
LIST LIST'

POST POST
SCREEN SCREEN

Y ANY I ANY
MORE ROOM MORE ROOM

? I

SAVE SAVE
STATUS STATUS

E IT

Figure 2B. Top Level Flowchart - DBPRO

PAGE 4J-5- 3

TOPIC H.6 - USER PROFILE ASSEFBLE ROUTINES

A. MODULE NAME

Program-ID - NTSPRO
Module-ID - TSPRO

B. ANALYST

Connie D. Becker
Neoterics, Inc.

C. NODULE FUNCTION

These routines act as the assembler service routines
for the user's profile. They permit the retrieval,
modification and storing of all synonym and default
values.

D. DATA REQUIREMENTS

1. I/O flock Diagram

See Figure 1

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

PROFILE LIBRARY is used to initially obtain
a profile for the user.

d. On-line Terminal Entries

Not Applicable

3. Output Data Sets

a. Output Files

PROFILE LIBRARY - the user's profile will be
written out as a member of this library with
the name of his NASIS-ID.

PAGE 4fr-5"714

b. On-line Terminal Displays

Not Applicable

c, Formatted Print Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

e. Return Code

A return code will be posted with a value
whose meaning is dependent upon the entry
point called.

4. Reference Tables

USERTAB-the program extracts the user's NASIS-ID
from the user data table.

E. FROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2

2. Narrative

a, TSPROF

At this entry point the program initializes
itself tc write out the current user's
profile. It first allocates a new list and
moves over all of the synonym entries not
marked for deletion. It next moves over all
of the default entries and re-orders the
default data values. The program then
attempts to locate an old profile for this
user in the profile library. If one is
found, it is deleted. The proaram then
writes out the new profile and gives it the
name of the user's NASIS-ID. If any errors
are encountered the error code is posted.
The program then returns to the caller.

b. TSGSYN

At this entry point the program initializes
itself to retrieve a synonym value. It first
searches the synonym entries until it locates

PAGE 54-T- 7

the logical location for the symbol
specified. If the entry is present and has
not been deleted, or if the entry located is
the symbol whose abbreviation was specified,
the synonym value is extracted and passed
back to the caller. If the entry located
did not correspond to the symbol specified, a
null value is returned to the caller.

C. TSGDEF

At this entry point the program initializes
itself to retrieve a default value. It first
searches the default entries until it locates
the logical locaticn for the symbol
specified. If the entry is present, the data
value offset is located and the data value is
moved into the caller's area. The program
then returns tc the caller.

d. TSPSYN

At this entry point the program initializes
itself to post a syncnym value. It first
checks to see if this is a delete request.
If not, the program builds the new entry. It
then searches the synonym entries until it
locates the logical location for the symbol
specified. If the symbol is to be deleted
and it is nct present, the program returns
immediately. Otherwise, it performs the
deletion by copying the entries prior to the
deleted entry and those following the deleted
entry, to a new profile similarly.
Similarly, adds are processed by inserting
the added entry between the two list
segments. Modifications, if allowed, are
performed in place. If a new profile was
created, the old list is deleted. If the
request was not for a deletion, the program
computes the minimum abbreviation length. If
it was a deletion, all synonyms for the entry
deleted are flagged as deleted. The program
then returns to the caller.

e. TSPDEF

At this entry point the program initializes
itself to post a default value. It first
checks to see if this is a delete request.
If not, the program builds the new entry.
The program does a getmain for 1500 bytes.
If the requested region is greater than 1500,

PAGE 5*&&74

control is passed to ISPROF where the content
profile is reorganized and entries flagged
for deleticn are deleted and the member is
condensed. If the area now required is still
greater than 1500, an error code of 10 is
passed back to DBPRO, otherwise processing is
continued. It then searches the default
entries until it locates the logical location
for the symbol specified. If the symbol is
to be deleted and it is not present, the
program returns immediately. Otherwise, it
performs the deletion by copying the entries
preceding the cne to be deleted and those
following it to a new profile. Similarly,
adds are processed by inserting the added
entry between the two list segments and
appending the data value at the end of the
profile. Modifications are performed in
place, if possible, if not, the data value is
simply added to the end of the profile. The
prcgram then returns to the caller.

F. CODING SPECIFICATIONS

1. Source Language

The module is written using the OS 360 Assembler
language.

2. Suggestions and Techniques

The entry searching routine should be coded as a
binary search and the list moving routine should
be coded as efficiently as possible.

TSPRO PROFILE
..LIBRARY

Figure 1. 10 Block Diagram

TERMINAL

DBCMND

MTTSUP DISPLAY

Figure 1. I/O Blockk-Diagram

-Iq
TSWLCM TSDATE

FORM FORM DATE TSUSERS
WELCOME AND TIME

MESSAGE MESSAGE TSNUSER

TSHELP

TSMSG
ISSUE

MESSAGE

?
MTT

TSBACK TSWAIT

FORM INVALID
.NON-MTT

MESSAGE MESSAGE _COMMAND
INSERT SET INSERT SET MESSAGE

TO 'BACK' TO 'WAIT'

FORM 'NON-
SUPPORTED'

MESSAGETSDBUG
WITH INSERT

PROMPT FOR
PARAMETERS

FORM INVALID M IF NEEDED
COMMAND I
MESSAGE

CALL
ASMCMND

M

Figure 2. Top :evel Flowchart RTN)

PAGE n 510

TOFIC H.7 - IMMEEIATE COMMANDS, INTERTACE MODULE

A. MODULE NAME:

Program-ID: NDBCMND
Module-ID: DBCMND
Entry Points: TSWLC9, TSEACK, TSDBUG, TSKA, TSKB,

TSUSERS, TSNUSER, TSDATE, TSWAIT,
TSHELP, TSMSG

B. ANALYST

William H. Petrarca
Neoterics, Inc.

C. MODULE FUNCTION

This module contains the P/I entry points for ten of
the immediate commands. In addition, the TSWLCM
entry writes the 'NASIS WELCOMES YOU' message to the
user terminal at LOGON. The immediate commands KA,
FB, USERS, NUSERS, HELP, and MESSAGE are set up in
this module and then processed by the mcnitor (MTTSUP)
via a call to ASMCNND. The immediate commands BACK,
$DEBUG, DATETIME, and WAIT are processed by this module
only.

D. DATA REQUIREMENTS

1. I/O BLOCK DIAGRAM

See Figure 1.

2. Input Data Sets

a. Parameter Cards

Not Applicable

b. Punched Card Input Files

Not Applicable

c. Input Files

Not Applicable -..

d. On-Line Terminal Entries

The program prompts-for--the parameters of
the .various appliqc2ab immediate commands.

3. Output Data Sets

PAGE 5

a. Output Files

Not Applicable

b. On-Line Terminal tisplays

The program issues various informative and
diagnostic messages to the user's terminal.

c. Formatted Print-Outs

Not Applicable

d. Punched Card Output Files

Not Applicable

4. Reference Tables

The program references the USERTAE table.

. PROCESSING REQUIREMENTS

1. Top Level Flowchart

See Figure 2.

2. Narrative

a. monitor-supported immediate commands

The immediate commands serviced by the entry
points TSKA, TSKB, TSUSERS, TSNUSER, TSHELP,
TSMSG are processed by the monitor via a
call to ASMCMND. However, the mode of the
current user, MTT or non-MTT, is checked so
that if a non-MIT user tries to use a NTT
command he is given a diagnostic. A return
is made to the calling program.

b. Unsupported immediate commands

The entry points TSBACK, ISWAIT, and TSDBUG
are diagnosed as unsupported commands.

c. TSWLCH

This entry point is called by DBMTT when a
user logs on. This entry point provides the
user with the welcome message and the date.

d. TSDATE

PAGE - ~Z-

This entry point performs the DATETIME function
within this module. The DATE function is used
from PL/I and Zeller's ccngruence is used to
determine the day of the week. The message is
formed and sent tc the user's terminal. A
return is then made to the callinq program.

F. CODING SPECIFICATIONS

1. Source Language

This program is imritten in PL/I (F) using the TSPL/I
preprocessor.

2. Suggestions and Techniques

Not Applicable

